您好, 访客   登录/注册

肝肾综合征肾血流量下降机制的研究

来源:用户上传      作者: 王静波 刘沛

  [摘要]肝肾综合征是严重肝病末期并发的肾功能衰竭综合征,肾脏本身无器质性病变,血流量减少是其病理生理学特征。目前“动脉血管收缩理论”和“心脏功能降低理论”得到学者认可。但是肾血流量减少的确切机制尚不清楚,可能与肾血管活性物质失衡、神经体液系统激活、细胞因子和内毒素血症相关。本文就其相关研究进展进行综述。
  [关键词]肝肾综合征;肾血流量下降
  [中图分类号] R587.2 [文献标识码] A [文章编号] 1673-9701(2011)24-13-04
  
   The Mechanism of Renal Hypoperfusion in Hepatorenal Syndrome
  WANG Jingbo1 LIU Pei2
  1.Department of Liver Cirrhosis, Shenyang Municipal Sixth People’s Hospital, Shenyang 110006,China;2.Department of Infectious Diseases,the First Affiliated Hospital,China Medical University,Shenyang 110001,China
  
  [Abstract] Hepatorenal syndrome (HRS) is defined as the development of renal failure in patients with terminal liver diseases in absence of any other identifiable cause of renal pathology. The pathophysiological hallmark of HRS is intense renal hypoperfusion. The most accepted theories on the pathogenesis of HRS are “Arterial Vasodilation Theory” and “Circulatory Dysfunction Theory”. But the mechanism of renal hypoperfusion is poorly understood and possibly multifacial involving imbalance of renal vasoactive mediators, activation of nervous system, cytokines and endotoxemia. We summarize the above progress in this review.
  [Key words] Hepatorenal syndrome; Renal hypoperfusion
  
  肝肾综合征(hepatorenal syndrome,HRS)是终末期肝病较严重的合并症之一,其病理生理学特征为肾血管收缩、肾小球滤过率下降和水钠潴留[1],与肝脏疾病严重程度呈正相关[2],主要表现为循环系统失调与肾脏功能紊乱。因为HRS肾脏结构没有改变,所以若能够及时纠正激活肾血管收缩的因素,在理论上HRS是可逆的[3,4](图1)。HRS肾血管收缩的机制尚不十分明确,“动脉血管舒张理论”[5](图2)和“心脏功能降低” [6](图3)得到学者普遍认可。由于门脉高压内脏血管显著扩张,刺激压力感受器,引起肾血管收缩;同时肾素及去甲肾上腺素水平增高,心输出量作为代偿机制却没有明显增加,不足以维持有效循环血量,导致肾血流量降低。现就HRS肾血管收缩的发病机制作一综述。
  1 内脏血管扩张
  肝硬化门脉高压诱导血管舒张的机制尚不十分清楚,可能是由于血浆中存在高浓度的舒血管物质所致。由于内脏舒血管物质增加,内脏动脉阻力减低,门静脉血流增加,加重门脉高压形成高动力性内脏循环;外周动脉扩张,心脏回流量减少,心率加快,流经中央血管的血流速度加快,形成高动力性体循环;但流经中央血管的血量却是减少的[7]。这些舒血管物质主要包括: ①一氧化氮(NO)最主要,由内皮细胞、血管平滑肌细胞合成,是最早发现的血管扩张因子[8],通过活化血管平滑肌细胞的钙离子依赖性钾通道(Kca)及第二信使cGMP,介导血管舒张[9]。NO在不同部位血管床的活性不同,内脏、体循环中NO活性高,可致内脏血管舒张,平均动脉压下降;肝内NO合成减少,使肝内血流阻力上升,加重门脉高压;肾脏中NO活性高,对维持肾灌流至关重要[10,11]。②胰高血糖素 肝硬化时胰高血糖素增加,它可降低全身血管阻力,但对门静脉却有收缩作用,是肝硬化全身动力循环和门脉高压形成的重要因素之一[12]。胰高血糖素与内毒素协同诱导NO合成[13],并能诱导肝细胞产生cAMP,其降解产生的腺苷引起水钠潴留[14]。③钾通道 主要有三种类型的钾通道通过控制钾离子外流[15]:a磷酸腺苷(ATP)敏感性钾通道(KATP)[16],b延迟调整钾通道,c钙离子依赖性钾通道(Kca)[17]。由于高动力循环,内皮上的Kca活化,胞外Ca2+内流,内皮型NO合成酶活化,NO产生增加[18,19]。
  2 缩血管物质增多
  ①交感神经系统(SNS)、肾素-血管紧张素-醛固酮系统(RAAS)、抗利尿激素(ADH) 由于门脉高压有效血容量降低,兴奋肾小球入球动脉的压力感受器, 肾脏SNS活性增强,刺激肾素释放,启动RAAS[20,21]。动脉血管容量不足,刺激容量感受器,使垂体后叶释放 ADH增加[22],当其浓度为(10~200)pg/mL时,通过阻断AT1P敏感性钾通道(KATP)及干扰NO-cGMP通路信号转导,发挥血管收缩作用[23]。在肝硬化失代偿期,钠潴留加重出现腹水,血中肾素、醛固酮、NA水平升高,但由于NO、PG、心房利钠肽(ANP)增加,可拮抗SNS和RAAS 的缩肾血管作用,维持肾脏灌流量基本正常或仅轻微下降;HRS时此拮抗作用失衡,肾脏灌流量下降;②内皮素(ET) 是缩血管活性最强的多肽物质,家族成员有ET-1、ET-2、ET-3,其中ET-1具有强烈缩血管作用,ET-3通过刺激血栓素A2释放而间接收缩血管[24]。肾脏组织中ET水平最高,对ET的结合力极强。ET不仅收缩肾小球血管平滑肌细胞,使肾血流量减少;而且还能收缩系膜细胞,使肾小球滤过面积减少,GFR下降。内毒素血症可刺激ET-1、ET-3水平升高[25]。血管舒张、肝星状细胞活化、有效血容量降低均可使ET合成增加[26,27];③系膜细胞 HRS时GFR下降与肾血流量减少不成比例,这表明除了肾血流量减少外,还有其他因素参与GFR下降,那有可能就是系膜细胞,系膜细胞对许多缩血管物质有反应,其收缩后不仅使肾小球血管阻力增加,还可导致肾小球滤过面积减少,超滤系数(Kf值)下降,GFR减少[28];④腺苷 为ATP降解产物,主要在组织缺氧时产生,肾内腺苷增多时,通过血管壁相应受体,收缩入球动脉,舒张出球动脉,促进AngⅡ的作用[29],引起GFR下降 ;⑤肾耗氧 肾氧耗与肝病损害严重程度呈正相关[30]。严重肝病末期患者血中NA 、肾素、醛固酮升高,刺激肾小球细胞的Na+/K+-ATP酶,使肾小球重吸收钠增加,这是一个耗能过程。随着病情加重,使肝肾反射活化,肾耗氧增加;⑥血栓素A2(TXA2)是肾内代谢产生的另一种缩血管物质,正常时肾脏局部血管化学物质比例相对恒定,维持肾脏正常血流灌注,而HRS时,其比值失衡,导致肾血管痉挛[31]。

  3 肾源性舒血管物质减少
  ①心钠素(ANP) 由心房合成与分泌,其结合部位在肾小球、肾直小管、血管平滑肌和内皮细胞,具有强大的利尿作用。但在HRS时,血中ANP水平虽然明显升高,可其昼夜分泌节律完全丧失,肾脏对ANP反应性下降[32];②前列腺素(PGs) 为花生四烯酸(AA)的代谢产物,内源性PG可增加心搏出量,减少外周阻力,使内脏血管扩张。当发生HRS时,由于PG合成酶减少及AA缺乏,肾脏合成PG减少[33];③缓激肽 是强大的舒血管物质,可增加肾血流量,促成PG合成,促进水钠排泄。HRS时,肝内血管舒缓素原与肾内血管舒缓素的合成均减少,导致缓激肽生成减少。
  4 肿瘤坏死因子α(TNF-α)的作用
  重症肝病时患者血中TNF-α水平明显升高[34]。 TNF-α可以增加Ca依赖性与非Ca依赖性蛋白激酶活性,增强VSMC收缩〔[35-37];可以活化内皮PKC,抑制eNOS的活性;可以缩短eNOS mRNA的半衰期使内皮产生NO减少[37,38]。TNF-α可以增加ET产生,通过TNFR2和ET-ETR依赖途径引起血管收缩[39]。血中TNF-α水平与血中肌酐、尿素氮水平相关,使用TNF-α合成抑制剂(己酮可可碱,PTX)后可改善肾功能,减少HRS发生[40],提示TNF-α参与HRS发生。
  5 内毒素
  晚期肝病时体内内毒素血症发生率大大提高,内毒素具有强烈的促肾血管收缩作用,使肾血流量减少,肾小球滤过率下降[41]。内毒素还能激活单核-吞噬细胞系统,释放血管活性物质[42]。内毒素作为NOs激活剂,催化内皮细胞产生NO,扩张腹腔血管,使肾供血减少,诱发肾功能不全。
  6 肝肾反射
  当肝功能恶化、门脉高压持续加重时,肝细胞肿胀,窦内压升高,通过肝肾间的交感神经系统引起肾交感神经活性增加,肾小球动脉收缩,GFR下降;此外,门脉压力增高,门脉血流减少时,通过肝内容量依赖性腺苷堆积,使肝脏传入神经活化,从而导致肾交感神经活化。
  7 二次打击
  在HRS的发病中,肝功能障碍和门脉高压是前提因素,即第一次打击;但尚需要其他因素协同作用,如自发性细菌性腹膜炎(SBP)、消化道出血、过度利尿、大量放腹水、肾毒性药物等等,使肾血流量进一步降低,加重肾脏损伤,即第二次打击,诱发HRS发生[43]。
   总之,肝肾综合征是在晚期肝病肝功能失代偿基础上,在多种影响水钠代谢、血管舒缩因素的共同作用下发生的肾脏血管收缩,肾脏血流量下降,肾小球滤过率降低的一种功能性肾功能不全。这其中全身血流动力学变化、内毒素血症等诸多因素起到了主要作用。
  HRS分为两型,1型HRS其特征为快速进行性肾功能损害(2周内血肌酐较基线增长≥100%至>2.5mg/dL),特利加压素[1mg/(4~6h),静脉注射]联合白蛋白为一线治疗药物,治疗目的是充分改善肾功能,降低血肌酐至<1.5mg/dL;特利加压素潜在替代药物包括去甲肾上腺素或米多君+奥曲肽,两者均联合白蛋白,但循证医学证据有限;TIPS、肾脏替代治疗、人工肝支持治疗,尚需要进一步研究。2型HRS其特征是稳定或非进行性肾功能损害,特利加压素+白蛋白对60%~70%患者有效。肝移植是1型和2型HRS最好的治疗方法,肝移植前应治疗HRS,这样可以改善肝移植术后转归。对血管活性药物有效和那些对血管活性药物无效需要暂时肾脏支持治疗的患者,一般行单独肝移植治疗;而对于需要长期肾脏支持治疗的患者,可考虑肝肾联合移植。关于HRS的预防,有SBP的患者静脉使用白蛋白,可以降低HRS发生率、改善生存率。
  [参考文献]
  [1] Wa HM,Mai ML,Ahsan N,et al. Hepatorenal syndrome:pathophysiology and management[J]. Clin J Am Soc Nephrol, 2006,1(5):1066-1079.
  [2] Arroyo V,Terra C,Gines P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome [J]. J Hepatol,2007,46(5):935-946.
  [3] Runyon BA. Management of adult patients with ascites due to cirrhosis: an update [J]. Hepatology,2009,49(6): 2087-2107.
  [4] Fabrizi F,Dixit V,Messa P,et al. Tedipressin for hepatorenal syndrome:a meta-analysis of randomized trials [J]. Int J Artif Organs,2009,32(3):133-140.
  [5] Guevara M,Gines P. Hepatorenal syndrome[J]. Dig Dis,2005,23(1): 47-55.
  [6] Ruiz-del-Arbol,Urman J,Fernandez J,et al. Systemic,renal,and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis[J]. Hepatology, 2003, 38(5):1210-1218.
  [7] Krag A,Moller S, Henriksen JH,et al. Terlipressin improves renal function in patients with cirrhosis and ascites without hepatorenal syndrome[J]. Hepatology,2007, 46(6): 1863-1871.
  [8] Erusalimsky JD,Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology[J]. Arterioscler Thromb Vasc Biol,2007,27(12): 2524-2531.
  [9] Iwakiri Y,Groszmann RJ. Vascular endothelial dysfunction in cirrhosis[J]. J Hepatol,2007, 46(3): 927-934.
  [10] Ros J,Claria J, Jimenez W,et al. Role of nitric oxide and prostacyclin in the control of renal perfusion in experimental cirrhosis[J]. Hepatology,2005,22(3): 915-920.

  [11] Salerno F,Gerbes A,Gines P,et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis[J]. Gut,2007,56(9):1310-1318.
  [12] Yang YY,Lin HC,Huang YT,et al. Inhibition of glucagon improves splanchnic hyporesponse to terlipressin in cirrhotic rats with blood retention in the gastric lumen[J]. J Hepatol,2005,42(5): 652-658.
  [13] Hirokawa K,Shaughnessy K,Moore K,et al. Induction of nitric oxide synthase in cultured vascular smooth muscle cells: the role of cyclic AMP[J]. Br J Pharmacol,1994, 112(2): 396-402.
  [14] Bankir L,Ahloulay M,Devreotes PN,et al. Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved? [J]. Am J Physiol, 2002, 282(3): F376-392.
  [15] Glab M, Lojek A, Wrzosek A, et al. Endothelial mitochondria as a possible target for potassium channel modulators[J]. Pharmacol Rep, 2006, 58 Suppl: 89-95.
  [16] Teramoto N.Pharmacological profile of U-37883A,a channel blocker of smooth muscle-type ATP-sensitive K Channels[J]. Cardiovasc Drug Rev, 2006, 24(1): 25-32.
  [17] Barriere E,Tazi KA,Pessione F,et al. Role of small-conductance Ca2+-dependent K+ channels in in vitro nitric oxide mediated aortic hyporeactivity to alpha-adrenergic vasoconstriction in rats with cirrhosis[J]. J Hepatol,2001, 35(3): 350-357.
  [18] Yang YY,Lin HC,Huang YT,et al. Role of Ca2+-dependent potassium channels in in vitro anandamide-mediated mesenteric vasorelaxation in rats with biliary cirrhosis[J]. Liver Int, 2007, 27(8): 1045-1055.
  [19] Trebicka J,Leifeld L,Hennenberg M,et al. Hemodynamic effects of urotensin Ⅱ and its specific receptor antagonist palosuran in cirrhotic rats [J]. Hepatology, 2008, 47(4): 1264-1276.
  [20] Basile DP,Donohoe DL,Phillips SA,et al. Enhanced skeletal muscle arteriolar reactvity to ANG Ⅱ after recovery from ischemic acute renal failure[J]. Am J Physiol Regul Integr Comp Physiol,2005, 289(6):1770-1776.
  [21] Schmidt LE,Ring-Larsen H. Vasoconstrictor therapy for hepatorenal syndrome in liver cirrhosis[J]. Curr Pharm Des,2006,12(35): 4637-4647.
  [22] Chan CC,Wang SS,Lee FY,et al. Effects of vasopressin on portal-systemic collaterals of cirrhotic rats[J]. Scand J Gastroenterol,2005, 40(1): 83-89.
  [23] Aulakh GK,Sodhi RK,Singh M. An update on non-peptide angiotensin receptor antagonists and related RAAS modulators[J]. Life Sci,2007,81(8): 615-639.
  [24] Palmes D,Skawran S,Stratmann U,et al. Amelioration of microcirculatory damage by an endothelin A receptor antagonist in arat model of reversible acute liver failure[J]. J Hepatol,2005, 42(3): 350-357.
  [25] Milner P,Dashwood M,Goodier D. Endothelin and vascular function in liver disease[J].Gut,2004, 53(2): 159-161.
  [26] Neuhofer W,Pittrow D. Role of endothelin and endothelin receptor antagonists in renal disease[J]. Eur J Clin Invest, 2006, 36 (Suppl 3): 78-88.
  [27] Badr KF,Murray JJ,Breyer MD,et al. Mesangial cell,glomerular and renal vascular resistance response to endothelin in the rat kidney. Elucidation of signal transduction pathways[J]. J Clin Invest,1999,83(1): 336-342.

  [28] Zou AP,Nithipatikom K,Li PL,et al. Role of renal medullary adenosine in the control of blood flow and sodium excretion[J]. Am J Physiol Regul Integr Comp Physiol, 1999, 276(3): 790-798.
  [29] Gadano A,Moreau R,Heller J, et al. Relation between severity of liver disease and renal oxygen consumption in patients with cirrhosis[J]. Gut, 1999, 45(1): 117-121.
  [30] Boffa JJ,Just A,Coffman TM,et al. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice[J]. Am Soc Nephrol, 2004,15(9): 2358-2365.
  [31] Brensing KA,Textor J,Perz J, et al. Long term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study[J]. Gut,2000, 47(2): 288-295.
  [32] Rimola A,GinesP,ArroyoV, et al. Thromboxane B2 and prostaglandin E2 in cirrhosis with ascites: relationship to functional renal failure (hepatorenal syndrome) [J]. J Hepatol, 1986, 3(1): 111-117.
  [33] Zhang HY,Han DW,Wang XG,et al. Experimental study on the role of endotoxin in the development of hepatopulmonary syndrome[J]. World J Gastroenterol, 2005, 11(4): 567-572.
  [34] Amrani Y,Martinet N,Bronner C. Potentiation by tumour necrosis factor-α of calcium signals induced by bradykinin and carbachol in human tracheal smooth muscle cells[J]. Br J Pharmacol,2005,114(1): 4-5.
  [35] Hsu YM, Chiu CT, Wang CC, et al. Tumour necrosis factor-alpha enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells[J]. CelI Signal,2001,13(9): 633-643.
  [36] Murthy KS, Jin JG, Makhlouf GM. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase C[J]. Am J Physiol Gastrointest Liver Physiol, 1994, 266(1): 161-165.
  [37] Elahi M, Asopa S, Matata B. NO-cGMP and TNF-alpha counter regulatory system in blood:understanding the mechanisms leading to myocardial dysfunction and failure[J]. Biochim Biophys Acta,2007,1772(1): 5-14.
  [38] Tang C,Wu AH,Xue HL, et al. Tanshinone ⅡA inhibits endothelin-1 production in TNF-Alpha-induced brain microvascular endothelial cells through suppression of endothelin-converting enzyme-1 synthesis[J]. Acta Pharmacol Sin,2007,28(8): 1116-1122.
  [39] Akriviadis E,Botla R,Briggs W,et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis:a double-blind, placebo-controlled trial[J]. Gastroenterology,2000,119(6):1637-1648.
  [40] Boffa JJ,Arendshorst WJ. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock[J]. J Am Soc Nephrol,2005, 16(1): 117-124.
  [41] Yamaguchi N,Jesmin S,Zaedi S,et al. Time dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat[J]. Peptides, 2006,27(9): 2258-2270.
  [42] Fernandez J,Navasa M, Planas R,et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis [J]. Gastroenterology,2007,133(3): 818-824.
  (收稿日期:2011-04-26)


转载注明来源:https://www.xzbu.com/6/view-2507787.htm