财务分析研究中数据挖掘方法的评析
来源:用户上传
作者: 曹志华
【摘要】 文章主要介绍了数据挖掘方法在财务分析方面的应用,针对应用中存在的问题,提出了相关的解决措施,以实现数据的真实与实时,以及信息涵盖范围的广泛和分析方法的全面。
【关键词】 数据挖掘; 财务分析; 神经网络
一、前言
数据挖掘技术是人们长期对数据库技术进行研究和开发的成果。数据挖掘(DM,DataMining)的概念产生于20世纪80年代末,在90年代获得了长足的发展。目前,数据挖掘技术已经应用到市场分析、政府管理、医疗卫生、科学探索、金融、财经领域中并取得了一定的实效。
财务数据挖掘是一种新的财务信息处理技术,其主要特点是能对会计数据库及其它业务数据库中的大量数据进行抽取、转换、分析及其他模型化处理,从中提取辅助决策的关键性数据。在企业的财务状况分析中应用数据挖掘技术,报表使用者可以节省大量的时间和精力去关注更有用的信息,帮助报表使用者找出隐藏的、未知的、但对了解企业经营状况十分有用的信息。
二、应用于财务分析的数据挖掘方法
现有研究中,应用于财务分析的数据挖掘方法主要有以下几种:
(一)神经网络
神经网络主要应用于财务危机预测和财务状况评价两方面。
1.财务危机预测
目前神经网络在财务危机预测的应用中主要集中在模型的建立和优化上。在模型建立方面,通过选取一定的样本包括ST公司和非ST公司,选取其中一部分作为训练集,其余的作为测试集。先对训练集进行归一化处理,再运用神经网络算法建立模型,为了验证模型的预测准确率,用测试集检验模型的预测结果。
在模型优化方面,一方面不断改进指标的选取,通过一定的统计方法客观选取指标,降低主观性,提高模型的预测准确性;另一方面不断改进神经网络算法,把不同的技术引用到模型中从而不断优化模型。
2.财务状况评价
神经网络运用到企业财务状况评价时,首先都是建立系统的评价指标体系,然后在神经网络结构和算法研究的基础上,通过样本对网络进行训练,最后得到稳定的结构和权值,从而建立模型。
(二)模糊集理论
目前有关模糊集理论在财务分析的应用主要集中在模糊综合评价法在企业财务状况评价的应用。在运用模糊综合评价法建立评价模型时,首先要确定因素集,因素集为各种指标体系的集合;其次要确定权重集,权重的确定主要有市场调查法和德尔菲法;再次要建立等级评价标准,评价等级集是评价者对评价对象可能做出的各种评价结果所组成的集合;最后建立模糊评价矩阵,经过运算得到评价结果。
在运用模糊集理论建立评价模型时,一方面需要根据企业的具体情况建立因素集和权重系数矩阵,具有一定的客观性;另一方面评价集以隶属度的方式表示,使其评价结果留有余地。
(三)决策树
决策树在财务方面主要应用于财务预警方面。利用决策树进行数据挖掘建模,首先需要进行变量的指定,一般把上市公司是否“特别处理”为目标变量,已选定的财务指标为输入变量;然后运用软件建立模型;最后要根据检验样本进行检验。
决策树作为一种数据挖掘技术运用到财务预警中具有较好的预测效果。目前,利用决策树进行财务预警处于起步阶段,如何更好的应用决策树有很大的研究空间。但是决策树的输出变量只能有两个,只能简单的预测评价企业财务状况好或者不好。
(四)遗传算法
现有的研究一般把遗传算法和神经网络结合在一起,通过遗传算法的全局寻优能力,建立财务困境预测的遗传神经网络模型,该模型利用遗传算法对输入变量进行了优化,比单纯的神经网络模型具有更好的预测能力。
遗传算法主要适用于数值优化问题,在财务分析中主要运用于具体的问题中,例如内涵报酬率的分析和证券组合选择分析,它作为一种解决数值优化问题的算法,在数值优化问题中有广阔的应用前景。
(五)粗糙集
粗糙集理论目前主要运用在财务危机预测中。首先是财务指标的筛选过程,通过计算条件属性和决策属性的依赖度,进而确定各条件属性相对于决策属性的重要程度,并根据重要程度对其进行条件属性约简;之后,确定筛选后进入预测模型的财务指标的权重,对财务指标重要程度做归一化处理后得到权重;最后,得到基于粗糙集理论的综合预测模型,应用预测模型计算对象的综合预测值。通过实证分析可以看出与传统判别模型进行比较,基于粗糙集理论的模型预测效果更好。
(六)聚类分析
聚类分析主要是对事先不知道类别的数据进行分类,目前对于聚类分析的研究集中到模糊聚类分析。
在对企业财务状况进行评价时,大多是运用模糊聚类分析方法,选取一定的财务状况评价指标,建立模糊聚类分析模型,进行实证分析,形成模糊聚类图,再将具有财务状况相似性的行业进行归类。
三、数据挖掘方法评析
从现有基于数据挖掘的财务分析方法可以看出,它们都是以财务报表为基础,因而存在以下问题:
(一)数据采集欠缺真实和滞后
企业为标榜业绩,常常粉饰财务报告、虚增利润,使财务报告中的数据丧失了真实性,在此基础上进行的财务分析是不可靠的。此外,财务报告一般是半年报和年报,半年报在半年度结束之后两个月内报出,年报在年度结束后四个月内报出,缺乏及时的信息跟踪和反馈控制,存在明显的滞后性,在这个基础上进行财务状况分析具有一定的局限性,从而影响分析的结果。
(二)数据挖掘范围广泛性不足且分析方法片面
现有的财务状况分析在根据财务信息对企业财务状况进行定量的分析预测时缺乏非财务信息的辅助分析,使信息涵盖范围不够广泛。而且,现有的财务状况分析方法都不能很好的把定性分析与定量分析相结合。
四、数据挖掘在财务分析应用的改进
(一)在数据采集方面
不再是以财务报表的资料为数据源,而是从企业中采集原始数据,提高数据的可信度。当然,会计信息数据也可以有多种表现形式,可以是传统的关系数据库、文本形式的数据,也可以是面向对象的数据库以及Web数据库等。另外,利用XBRL和WEB挖掘等技术加入了非财务信息和外部信息。这样,财务分析所需要的财务信息、非财务信息和外部信息可以分别从会计信息系统、管理信息系统和Internet采集。
实时数据库的建立使实时数据挖掘成为可能,为企业财务状况分析的准确性提供了技术支持。实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务。XBRL开始广泛的应用,将会促进实时数据采集问题的实现。
(二)在数据挖掘过程中
应综合运用数据挖掘的各种技术,对净化和转换过后的数据集进行挖掘。将非财务信息纳入考察范围,以扩充信息的涵盖范围。
实际运用中,定性分析和定量分析方法并不能截然分开。量的差异在一定程度上反映了质的不同,由于量的分析结果比较简洁、抽象,通常还要借助于定性的描述,说明其具体的含义;定性分析又是定量分析的基础,定量分析的量必须是同质的。在需要时,有些定性信息也要进行二次量化,作为定量信息来处理,以提高其精确性。●
【参考文献】
[1] 康晓东.基于数据仓库的数据挖掘技术[M].北京:机械工业出版社,2004:131-148.
[2] 李建锋.数据挖掘在公司财务分析中的应用[J].计算机工程与应用,2005(2).
[3] 姚靠华,蒋艳辉.基于决策树的财务预警[J].系统工程,2005(10):102-106.
[4] 林伟林,林有.数据挖掘在上市公司财务状况分析中的应用[J].市场周刊,2004(10).
[5] 汪嘉杨,王卓.基于BP神经网络的企业效绩综合评价方法[J].成都信息工程学院学报,2004(3):117-121.
[6] 王世彤.企业财务综合分析方法[J].系统工程理论与实践,1998(12):103-109.
转载注明来源:https://www.xzbu.com/3/view-768498.htm