您好, 访客   登录/注册

初探等比数列求和的几种方法

来源:用户上传      作者: 徐荣祥

  摘要:数列求和是高中数学教学中的难点、重点,属于思维开发类的题目。在教学过程中,由于其数列安排的繁琐、复杂,使学生一看容易产生“懵”的感觉,总是觉得无处下手,其实数列之间都有一定的关系,关键在于教师要引导学生分析、讨论其数列之间的关系形式,进而自主解决问题。新课改一直强调课堂教学中学生的主体性作用,作为教师在教学中可以引导学生分析数列关系,然后引导学生拓展思维,分析、讨论数列求和的解题方法。
  关键词:等比数列;求和;方法
  数列求和作为高中数学教学中的难点和重点,是高考考核的重要部分之一,作为教师应加强关注学生,结合学生的个性特征,构建和谐、平等的教学环境,引导学生分析、总结数列之间的关系,进而让学生自主探究、解证,凸现课堂教学中学生的主体性作用,鼓励学生创新,探索多种等比数列求和的方法。
  所谓等比数列指的是:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。其中,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列。在此,笔者结合自己多年的教学经验,谈一下如何在等比数列求和教学中,引导学生总结多中解题方法。
  一、恒等变形法
  所谓恒等变形法指的是:在保持原式结果恒等的情况下,优化、改变原题的表现形式。这样一来,原式就具有明显的共同点,便于更好地解决问题。对于此方法的运用,可以首先师生共同分析、总结,改变原式;之后引导学生自主解题;最后,引导学生拓展思维,找出不同的变形式来解题,可以是自主地也可以是小组合作进行,锻炼和培养学生思维能力的同时提高学生的动手实践能力,深化学生对数学的认知。如:
  解题:a1+a1q+a1q2+……+a1qn-1。
  1.师生共同分析、总结变形后的式子为:a1(1+q+q2+……+qn-1)之后,引导学生自主解决可以得出:a1(1+q+q2+……+qn-1).分解因式等于:1-qn=(1-q)(1+q+q2+……+qn-1).因此,a1(1+q+q2+……+qn-1)=a1(1-qn)/1-q,最后得出:sn=a1(1-qn)/1-q.
  2.拓展学生思维空间,给予学生足够的自主权,让学生自主地或者小组合作找出其他的变形式,并解决问题,提高学生的数学素养。高中生已经具备了一定的独立思考能力,有了一定的思维结构,很快学生就得出了不同的变形式。即:
  a1+a1q+a1q2+…+a1qn-1+a1qn-a1qn=a1+(a1q++a1q2+…+a1qn-1+a1qn)-a1qn=a1+q(a1+a1q+…a1q2+…+a1qn-1)-a1qn=a1+qsn-a1qn,因此,a1+qsn-a1qn=sn,所以同样得出:sn=a1(1-qn)/1-q,还可有:a1+a1q+a1q2+……+a1qn-1=a1q+a1q2+……+a1qn-1+a1qn/q=sn-a1+a1qn/q,因此sn=sn-a1+a1qn/q最后也得出:sn=a1(1-qn)/1-q.这样的方法还多种多样,其关键在于教师的引导,数学本身属于实践性、探究性较强的学科,作为数学教师,应抓住一切机会,给予学生自主权,培养学生积极探究的兴趣和欲望,从而提高学生的综合技能。
  二、比例性推理法
  所谓比例性推理法指的是:根据等比数列的本质特征和性质公式,实施推理,得出结论,能够有效地锻炼学生的逻辑思维能力。如:等比数列的概念指出:a2/a1=a3/a2=……=an/an-1=q;通过等比定理可以推出:a2+a3+…+an/a1+a2+…+an-1=q;因此得出:sn-a1/sn-an=q;其中an=a1qn-1,将其带入化简式可以得出:sn(1-q)=a1(1-qn),最后得出:sn=a1(1-qn)/1-q.同样可以引导学生通过分比定理来自主解决问题,即:通过分比定理推出:a2-a1/a1=a3-a2/a2=…=an-an-1/an-1=q-1/1;之后,运用同样的道理,运用等比推理换化、得出化简式:-a1+an/sn-an=q-1,进而将an=a1qn-1带入,得出最后的结果。
  三、总结推理法
  所谓总结推理法指的是:对原式进行分解,逐一验证得出结果,根据其分解式的结果进行推理、总结,得出最后结论。等比数列有一定的规律性,那么其分解因式的结果也肯定有一定的规律性,这样,根据结果的规律性可以直接推导出最终结果。如:首先假设n=3,可以得出:s3=a1+a1q+a1q2=a1(1+q+q2)=a1(1-q3)/1-q;进而,继续假设,当n=4时,原式为:s4=a1+a1q+a1q2+a1q3=a1(1+q+q2+q3)=a1(1-q4)/1-q;通过这两组的确切数字分解可以直接得出:sn=a1(1-qn)/1-q.对此,教师还可以打破教材的束缚,拓展学生的思维,让学生在不断的探究过程中尝到成功的喜悦,进而增强自己学习数学的自信心。解决等比数列的问题时,只需引导学生寻找规律,进行推理即可。因此,在教学中,教师要大胆鼓励学生创新,并对创新的同学进行表扬,激励学生自主创新的意识。就上述等比数列的例题,教师可让学生自主探究,当n=k时,结论是什么?当n=k+1时,结论又是什么?详细分析、总结推导过程,丰富学生的解题方式。
  四、结语
  总之,等比数列求和的方法是多种多样的。作为教师,应创设情境,引发学生自主的深入探究,同时还可以举办“创新评比大赛”等活动,激励学生深入探究的积极性和欲望,鼓励学生大胆拓展思维,升华学生对数学知识的认识,全面提高学生的数学素养。
  参考文献:
  [1]郑毓信.数学教育:从理论到实践[M].上海:上海教育出版社,2001.
  [2]涂荣豹,王光明,宁连华.新编数学教学论[M].上海:华东师范大学出版社,2006.
  [3]马复.设计合理的数学教学[M].北京:高等教育出版社,2003.
  [4]魏清.中学有效教学策略研究[M].上海:上海三联书店出版社,2005.
  (作者单位 江苏省高邮市甸垛中学)
  


转载注明来源:https://www.xzbu.com/9/view-64193.htm