您好, 访客   登录/注册

土壤日晒在绿色植保中的应用与展望

来源:用户上传      作者:

  摘要 土壤消毒主要用于土壤病虫草害防控。过去几十年,土壤主要采用化学药品熏蒸消毒,不合理使用容易造成环境污染。土壤蒸汽消毒、火焰消毒和热水浇灌等需要专门的仪器设备,且存在能耗较高、灭生性强、容易破坏土壤结构等缺点。目前,土壤日晒技术受到意大利、美国、以色列等70多个国家农业科学家的广泛关注,但在中国依然处于初级阶段。本文总结了国内外学者关于土壤日晒对农业病虫草害、土壤肥力、农作物产量等方面的影响与应用,分析了土壤日晒存在的局限性,并对土壤日晒在未来农业绿色防控上的应用前景进行了展望,以期为农产品无公害生产提供理论依据和实践参考。
  关键词 土壤日晒; 土壤消毒; 病虫草害; 绿色防控
  中图分类号: S 477
  文献标识码: ADOI: 10.16688/j.zwbh.2018344
  Abstract Soil disinfection is mainly used for control of soil pathogens, pests and weeds. In the past few decades, soil was mainly disinfected by chemical fumigation, but their misuse has caused environmental pollution. Soil steam disinfection, flame disinfection and hot water irrigation require special equipment. Moreover, these methods have some disadvantages, such as energy consumption, strong inactivation and easy to destroy soil structure, etc. At present, soil solarization attracts wide attention from agricultural scientists over 70 countries such as Italy, the United States and Israel, etc., but it is still in its infancy in China. This paper summarizes the influences and application of soil solarization on plant diseases, pests and weeds in agriculture, soil fertility, crop yield, etc., analyzes the limitations of soil solarization. Furthermore, the application foreground of soil solarization in future green prevention and control is prospected. So it can be expected to provide theoretical basis and practical reference for the pollutionfree production of agricultural products.
  Key words soil solarization; soil disinfection; disease, pest and weed; green prevention and control
  作物种植或移栽前,先用化学、生物或物理手段进行土壤消毒,可以减少土壤中有害生物的基数,降低作物生长后期被其危害的风险[1]。溴甲烷作为风靡一时的土壤消毒剂,从19世纪40年代开始投入使用,因其高效性和广谱性,60年代至80年代逐渐成为使用最广泛的土壤熏蒸剂[2]。然而,1992年《蒙特利尔议定书》列出溴甲烷对臭氧层具有破坏作用[3],并要求世界各国分别在2005-2015年期间逐步禁用溴甲烷作为土壤消毒剂[4]。随后,市场上相继出现了大量替代溴甲烷的化学产品[5],如:氯化苦、1,3二氯丙烯、棉隆、威百亩、臭氧、福尔马林等。这些替代品中,有些对土壤的消毒效果并不理想;有些虽然效果好,但使用成本过高;有些对人畜和环境有害等[6]。日本学者Shinmura[7]和荷兰学者Blok等[8]在2000年发展了生物熏蒸技术,通过在地膜下加入有机物,厌氧发酵生成有害气体杀灭土壤病原菌和线虫,然而生物熏蒸需要选择合适的有机质和温湿度条件,限制了该技术的广泛运用。纯物理的土壤消毒方法包括蒸汽消毒[9]、火焰消毒[10]、热水浇灌[11]、土壤日晒[12]等。蒸汽消毒、火焰消毒和热水浇灌等需要專门的机械设备,需要专业的技术人员操作,在发达国家应用较多,在我国大面积推广应用存在一定的困难。而且这些方法仍有能耗较高,灭生性强[13],容易破坏土壤结构等缺点[1415]。而土壤日晒技术是通过紫外线、太阳能加热和光催化三种方式联合消毒防治病虫草害。杀灭土壤内有害生物主要依赖太阳能加热消毒。该方法操作简单,即选择阳光充足的夏季,在地面灌水覆膜,膜四周用土壤压盖严实,待阳光照射膜面,通过提高膜下土壤温度将土壤中的有害生物杀死[16]。土壤日晒一般在作物种植或移栽前使用,能够有效地消灭或降低土壤中原有不耐高温的有害生物[1718],对许多有益微生物影响较小,对人畜和环境相对安全,不影响农作物正常生长,甚至还能提高农作物产量[19]。
  土壤日晒技术最早报道于1976年,以色列学者 Katan成功利用土壤日晒防治番茄和茄子枯萎病及几种杂草[2021];后来许多国家根据各自的条件改进,成为广泛使用的土壤消毒技术[22]。目前,土壤日晒技术受到意大利、美国、以色列、澳大利亚等70多个国家农业科学家们的广泛关注[2324]。中国关于土壤日晒技术的研究起步较晚,虽然有高温闷棚防治病害和线虫的例子,但研究均不深入,而且主要局限于设施蔬菜,对露地作物开展土壤日晒消毒的应用甚少。本文总结了国内外学者关于土壤日晒对农业病虫草害、土壤肥力、农作物产量等影响的研究与应用,分析了土壤日晒技术的局限性和存在的问题,在此基础上对土壤日晒在未来农业绿色防控方面的应用前景进行了展望,以期为我国农产品无公害生产提供理论依据和实践参考。   1 土壤日晒技术在控制农业病虫草害中的应用
  土壤日晒技术已经成功地运用到某些病虫草害的防控,其主要机理是通过快速提高土壤温度,引起生物膜不稳定或破坏生物膜功能,导致生物的呼吸酶失活而窒息死亡[25]。
  土壤日晒对土壤微生物的种类和结构产生很大的影响[2627]。大量学者研究表明,温度超过50℃容易导致病原菌的热死亡,但也有学者认为45℃是病原菌的亚致死温度,倘若在45℃条件下持续更长时间,也能将病原菌杀死,况且有些病原菌对温度更敏感[2829]。例如,土壤温度达到39℃时,终极腐霉Pythium ultimum、立枯丝核菌Rhizoctonia solani、根串珠霉Thielaviopsis basicola等繁殖体接近死亡[30]。土壤日晒可以杀灭大多数植物病原菌[31]。通过日晒处理后,土壤真菌的数量快速减少85%~90%;阴性荧光假单胞菌和革兰氏阳性细菌(包括芽胞杆菌)的数量减少78%~86%;放线菌的数量减少45%~58%[27]。因此,许多地中海国家长期采用土壤日晒技术防治番茄真菌性土传病害[32],尤其是土壤日晒可以有效地控制危害番茄的大丽轮枝孢Verticillium dahliae,也可以抑制引起辣椒茎腐烂的尖镰孢Fusarium oxysporum f.sp. melonis[3334]。土壤日晒技术还能有效地防控韭葱白腐病菌Sclerotium cepivorum、蚕豆立枯丝核菌Rhizoctonia solani、罗勒属植物寄生疫霉Phytophthora nicotianae var. parasitica、辣椒白绢病菌Sclerotium rolfsii、草莓枯萎病菌Fusarium oxysporum、根癌农杆菌Agrobacterium tumefacien、番茄溃疡病菌Clavibacter michiganensis、马铃薯疮痂病菌Streptomyces scabies等[29,3536]。另外,倘若作物种植面积太大,为了降低土壤日晒技术带来的经济成本,可以在作物育苗前将苗床进行日晒,培养出健康的移栽苗[37]。例如,孟加拉国农民在水稻苗床上应用土壤日晒技术,能够有效地控制水稻苗期病虫害[38]。
  除了防控对作物生长有害的病原菌外,土壤日晒还能增加某些优势菌群的数量[39]。例如,经过土壤日晒处理后,土壤中的假单胞菌Pseudomonas spp.、青霉Penicillium spp.、曲霉Aspergillus spp.、镰刀菌Fusarium spp.、木霉Trichoderma spp.、踝節菌Talaromyces flavus等数量显著增加[4041]。踝节菌Talaromyces等有益微生物的增加,可有效地控制由轮枝孢引起的茄子枯萎病[42]。因此,土壤日晒也能通过提高优势菌群的数量达到间接防治病原菌的效果。
  土壤日晒对高温耐受性不强、活动能力较差的土居害虫具有显著的防治效果[43]。史彩华等[44]在我国率先发明了“日晒高温覆膜”防治韭菜迟眼蕈蚊Bradysia odoriphaga的新技术,该技术的操作方法与土壤日晒类似,中国北方在阳光充足的4月底至9月中旬,割除韭菜叶片后覆膜,只要土壤5 cm深处温度达到40℃且持续4 h以上,就能将韭菜迟眼蕈蚊100%杀死,同时兼治蓟马、蚜虫、蜗牛等。“日晒高温覆膜”技术已经在山东、河北、河南、天津、甘肃、北京、浙江、安徽、山西等地进行过试验示范,其防治效果均高达100%,这一结果充分证明了该技术防治韭菜迟眼蕈蚊的可行性、高效性和快速性,为土壤日晒可能有效防控其他土居病虫害提供间接有力的证据。
  土壤日晒也能有效地消灭或减少土壤30 cm深处不同种类的线虫[4546]。在美国北部,土壤日晒主要用于防治蔬菜和花卉的根结线虫Meloidogyne spp.[47]。经土壤日晒处理后,番茄根结指数显著降低,根部和土壤中的爪哇根结线虫Meloidogyne javanica的数量分别减少91%和62%[48]。另外,土壤日晒还可以防治马铃薯白线虫Globodera pallida、短体线虫Pratylenchus spp.、肾形线虫Rotylenchulus reniformis、大豆孢囊线虫Heterodera glycines、刺线虫Belonolaimus spp.、较小拟毛刺线虫 Paratrichodorus minor、剑线虫Xiphinema spp.、葡萄轮纹线虫Criconemella xenoplax、起绒草茎线虫Ditylenchus dipsaci、马铃薯孢囊线虫Globodera rostochiensis、双角螺旋线虫Helicotylenchus digonicus、北方根结线虫Meloidogyne hapla、弯钩针线虫Paratylenchus hamatus、甜菜异皮线虫Heterodera schachtii等[4649]。
  土壤日晒还可以控制杂草生长。该技术防治杂草最早起源于印度[50],即炎热的夏季,在湿润的土壤上覆盖塑料薄膜,持续4~6周可以杀死90%的杂草,尤其是一年生杂草[51]。例如苘麻Abutilon theophrasti、反枝苋Amaranthus retroflexus、野燕麦 Avena fatua、黑芥Brassica nigra、藜Chenopodium album、田旋花Convolvulus arvensis、银胶菊Parthenium hysterophorus、列当Orobanche coerulescens、臭荠Coronopus didymus、龙爪茅Dactyloctenium aegyptium、光头稗Echinochloa colonum、苍耳 Xanthium strumarium 等[52]。土壤日晒对多年生杂草的防除效果较差,只能杀死多年生杂草的叶部,对根和球茎等部位的作用较小,即使叶部死亡,后期根茎部位依然可以恢复生长,甚至加速生长,如香附子Cyperus rotundus、马唐Digitaria sanguinalis等[53],其主要原因可能是多年生杂草的根系埋藏较深,深层次土壤温度又难以大幅度提升,从而导致温度达不到杂草根系的死亡阈值[54]。另外,土壤日晒对杂草的防治效果还受其他因素的影响,包括覆盖膜的颜色、杂草的生长时期和土壤湿度等,例如:透明聚乙烯膜覆盖对杂草的控制效果显著高于黑色聚乙烯膜;休眠中的杂草和土层深处的杂草种子不受日晒的影响;潮湿土壤实施日晒技术对杂草的控制效果比干燥土壤更好等[55]。   2 日晒对土壤肥力和作物产量的影响
  土壤日晒能够引起土壤产生诸多复杂的物理化学和生物学特性变化。比如分解有机质,提高土壤可溶性氮(NH+4, NO-3)、钾、镁、钙、钠等元素的含量,降低土壤中锰的含量[56]。土壤日晒可以促进有机质大量分解,也可以导致硝化细菌大量死亡,从而提高可溶性氮的积累[57]。另外,土壤日晒改善土壤理化性质,影响土壤微生物系和土壤动物群体内的酶活系统[58],最终促进作物生长和提高产量[59]。大量研究表明,经过土壤日晒后NH4N和 NO3N的浓度在0~15 cm的土壤层中增加[57],暗示土壤温度的增加提高了土壤有机氮[56]。Morra等[56]的研究表明,土壤日晒提高了土壤有机碳含量,有利于绿叶蔬菜的生长。例如:经土壤日晒处理后,秋葵Abelmoschus esculentus叶部组织中的碳、钾、氮、镁的含量更高,磷和锌的含量降低[4]。
  土壤日晒在不同程度上促进作物生长,提高作物产量[33,60]。主要原因可能包括3个方面:其一,土壤日晒有效地控制了土壤中的病虫草害;其二,土壤日晒改善了土壤的结构;其三,土壤日晒增加了作物可吸收的有效氮和其他营养物质[2]。例如,土壤日晒使花生Arachis hypogaea、马铃薯Solanum tuberosum和茄子Solanum melongena的產量分别提高了123%、35%和215%[20]。另外,土壤日晒也分别增加了棉花Gossypium spp.、洋葱Allium cepa、胡萝卜Daucus carota、黄瓜Cucumis sativus、莴苣Lactuca sativa和草莓Fragaria ananassa等作物的产量[6164]。
  3 土壤日晒的受限因子及存在的问题
  土壤日晒的核心是提高土壤温度杀死一些耐受性较差的病虫草[19]。然而,影响土壤升温的因素较多,如土壤湿度、土壤颜色、土壤结构、太阳光照强度、大气温度、膜材质、膜颜色、膜厚度等[65]。另外,土壤温度提升与膜的密闭性、膜内外温差和日晒期间的气候条件等有关[4]。在密闭的环境下,覆膜面积越大,引起膜内外环境温差越大,土壤升温效果越好[66]。Castronuovo等[67]的研究表明,在密闭的温室条件下,土壤升温效果比露地快。Ham等[68]的研究表明,覆膜比未覆膜的土壤平均高出6℃,且它们之间的差异随着土壤深度变化而变化。Pinkerton等[69]的研究表明,土壤日晒期间,白天土壤5~30 cm深处的最大温度比未覆膜的高8~16℃,但夜间相差较小,仅为2~4℃。为了明确土壤日晒的最佳时期,有学者研究表明,覆膜后土壤10 cm深处的最高温度在白天超过35℃,且覆膜与未覆膜土壤的平均温差超过10℃,就可进行土壤日晒处理[4]。
  土壤日晒受土壤湿度影响较大[70]。大多数学者认为,水能够很好地吸收红外辐射,根据水的物理性质,湿润土壤的吸热效果比干燥土壤更强[7172]。另外,土壤湿度有利于提高热传导性,促使热量快速进入深层土壤,消灭深层土壤中的病虫草[73]。因此,日晒期间保持土壤湿润至关重要。湿润土壤可以提高杂草种子和土壤微生物的新陈代谢,打破其休眠,待土壤温度升高至一定程度后,破坏其细胞,导致其死亡[71]。前人研究表明,随着土壤湿度增加,热能和热传导也随之增加[74]。然而,AlKaraghouli等[75]的研究表明,日晒期间的最大土温随着土壤湿度的进一步增加而降低;Bohra等[76]的研究表明,日晒期间,干旱土壤5 cm深处的温度增加10℃,湿润土壤仅增加7℃。以上暗示在覆膜之前对土壤浇水非常重要,但水量不能太大,避免土壤成泥沾染在薄膜表面,影响阳光透射。DeVay等[77]认为土壤60 cm深处的含水量达70%可获得最佳的日晒效果。
  土壤日晒也受土壤生态影响,例如土壤类型、土壤颜色、土壤结构、有机质含量等[78]。前人研究表明,黑土比浅色土壤更容易吸收阳光辐射[79],暗示土壤有机肥力过于贫乏,也会影响日晒效果。因此,在土壤中增加动物粪便或植物残渣,改善土壤质地,有助于提高土壤日晒的效果。其主要原因可能包括3个方面:其一,有机质增加了土壤湿度,提高了土壤的导热性;其二,有机质中微生物的热反应可以提高土壤温度1~3℃;其三,日晒升温加速了有机质分解,产生的生物毒素可能具有熏蒸杀死土壤有害微生物的作用[80]。前人研究表明,土壤日晒时加入甘蓝Brassica napus残渣,其释放的芥子油苷和代谢产物对土壤中尖孢镰刀菌Fusarium oxysporum具有很好的熏蒸防控效果[81]。另外,土壤日晒受土层深度的影响较大,一般近地表的温度最高,随着土壤深度增加温度降低[82]。土壤0~5 cm深处的温度可超过50℃,10~15 cm深处的温度可达40~50℃,但是土壤20~30 cm深处的温度仅达36~40℃[83]。当土壤温度达到42℃时,大部分土传病害和土壤昆虫失去活力,甚至死亡[50]。暗示常规的土壤日晒可以控制土壤20 cm左右的病虫草害。倘若防治更深土层的病虫草,需要配合其他辅助手段来增加更深土层的温度。
  塑料材质与土壤升温效果的关系十分紧密[84]。低密度聚乙烯和乙炔醋酸乙烯对土壤的升温效果最好[85];乙炔醋酸乙烯膜对土壤的升温效果比聚乙烯膜更好[72]。然而,聚乙烯膜在农业上的应用较早,1939年已经开始规模化生产。因此,目前聚乙烯膜在农业上的应用非常普遍。塑料膜颜色是获得太阳辐射能量,减少长波辐射返回的重要参数[7, 54]。黑色、不透明或半透明的塑料膜减少了太阳辐射能量的透过,大部分能量被返回到大气中,少量的热能进入土壤中[86]。因此,膜的透明度影响了土壤的升温效果。前人研究表明,透明膜升温效果最佳,其次是黑色膜,最差的是白色膜[75]。AlKaraghouli等[87]的研究表明,聚乙烯膜的透射率依次为:透明膜>红色膜>绿色膜>黄色膜>蓝色膜>黑色膜,也进一步间接证实了透明膜对土壤的升温效果最佳。膜的厚度也是影响土壤升温的关键因子。薄塑料膜能够透过太阳光短波,而阻挡地面的长波传回大气层,长波辐射被转换成波长更长的红外能量,产生温室效应[88]。因此,薄塑料膜的升温效果比厚塑料膜好。Katan[1]的研究表明,塑料膜厚度为25~30 μm时升温效果更好,而且双层膜比单层膜效果更好。当然,膜的选择与使用也需要结合农事实际情况,综合考虑膜的结实性和实用性等。另外,一般膜边缘温度较低,为了减少边际效应,膜面积尽量大于田块面积,覆膜也要尽量均匀,避免在膜内形成空气泡影响升温效果。   土壤日晒升温最主要依靠太阳光的辐射能量[89]。因此,选择日晒的时期至关重要,不同地区选择日晒的时期不尽相同。夏威夷4-8月是最佳日晒季节[50];中国北方4月底至9月中旬均可进行土壤日晒[44];地中海、沙漠、热带气候等在夏季空气温度较高的时期进行土壤日晒效果最佳[90]。无论什么地域,一般选择太阳辐射较强的天气覆膜4~6周;若碰到阴雨天气,可延长覆膜时间至10~14周或者更长[86,91]。然而,有些学者认为土壤日晒的时间一般持续18~33 d(平均24 d),如果时间过长,将会导致土壤有益微生物缺氧死亡,而且覆膜时间太长,直接影响农民的种植计划[4]。当然,土壤日晒时间与防治的对象有关,针对浅土层不耐高温的病虫草害,可以适当减少覆膜时间,如史彩华等[44]选择太阳光照强烈的天气覆膜,仅仅只要土壤温度达到40℃且维持4 h则可100%杀死韭蛆。土壤湿度、太阳光照强度、塑料膜材质、土壤质地、覆膜时间等均能影响土壤日晒的效果[92],尤其太阳光照强度更是重中之重。
  4 展望
  土壤日晒技术可有效地杀灭土壤中不耐高温的病虫草害,具有操作简单、经济有效、对环境安全友好等优点,而且易学易培训,它的应用可以显著降低化学农药施用量,适合有机农业或其他低能耗的农业系统。在不影响种植计划的前提下,我国农民可以选择每年的4-9月移栽或种植新作物之前,进行土壤日晒,不仅能够消灭或降低土壤中原有不耐高温的病虫草,也能增加土壤中有机质的分解速率,改善土壤团粒结构,提高作物的吸收利用率,促进作物生长并提高产量与品质。另外,倘若能够将土壤日晒技术配套机械化操作,将进一步降低人工劳动成本,提高工作效率。总体而言,科学合理地利用土壤日晒技术,在绿色植保或有机农业中存在巨大潜力。
  当然,土壤日晒技术也存在明显的局限性,对病虫草害的防控效果受诸多外界环境因素的影响。例如,土壤日晒对高温耐受性较强的病虫草害防控效果较差;土壤覆膜时可能要求停止生产,而且覆膜时间要求较长,可能影响农民的种植计划;土壤日晒后容易造成膜污染,虽然降解聚乙烯膜解决了这一难题,但也提高了使用成本等[70]。由于病虫草害所在土层的温度是影响土壤日晒防治效果的关键,若能快速高效地提高土壤温度达到病虫草的致死阈值,或许能够更加彻底地杀死土壤中的有害生物,同时也能缩短覆膜时间,保证种植计划正常进行。因此,科学家们要继续努力,在土壤升温和保温所用材料上加大研发力度。
  土壤日晒存在固有的局限性,导致日晒效果并不稳定。因此,可以将土壤日晒技术与其他一些生物、化学和物理的手段联合使用,提高土壤日晒对有害生物的防治效果[4]。例如,事先采用有机质修复土壤,然后再覆膜,这样可以显著降低有害生物的致害活力。张广荣等[93]在土壤中添加麦草和鸡粪后进行日晒,土壤5 cm处的温度显著高于对照组,最高温度甚至超过60℃且持续5 h以上,土壤日晒处理一次能够100%控制第一茬和第二茬的黄瓜根结线虫;焦永刚等[94]进行闷棚土壤日晒,并在土壤中添加有机肥和速腐剂,发现茄子的产量显著提高。单纯的土壤日晒或堆肥发酵不能完全防治莴苣上的南方根结线虫,但是将土壤日晒和堆肥结合起来使用,可以彻底防治南方根结线虫,提高莴苣的产量[95];施用鸡粪与土壤日晒联合作用,显著减轻土传病害炭腐病的发生,提高作物产量[96]。以上暗示土壤日晒技术有可能解决未来秸秆还田带来的病虫草害问题,尤其是田块连作问题。曾经农民焚烧多余的秸秆,除了烧死秸秆中残留的病虫草,也可改善土壤肥力。如今禁止焚烧秸秆,鼓励秸秆粉碎还田,积累了大量的病虫草害。倘若秸秆还田后,配套土壤日晒技术,其作用或许类似秸秆焚烧,甚至可以加速土壤中其他病虫草害死亡,同时也可腐熟秸秆提高土壤中有机肥的含量。张广荣等[93]的研究表明,土壤日晒时添加甘蓝叶,对黄瓜地第一茬和第二茬的根结线虫防治率分别达100%和50%,虽然对第二茬的根结线虫防效较低,但是大面积种植甘蓝的地区,有大量甘蓝叶尾菜需要处理,如果与土壤日晒联合起来,既可变废为宝,不使用或减少使用化学农药,保护环境,降低农药残留,又可以增加有机肥,改良土壤结构,防治病虫害等。以上暗示作物收获后剩下不好处理的残枝落叶等均可作为填充物,试着与土壤日晒联合作用,变废为宝,特别适合大面积种植蔬菜的区域。同时,土壤日晒技术也可与化学熏蒸剂、杀虫剂和除草剂等联合使用,破坏生物体的呼吸系统或导致其呼吸酶失活而死亡[97]。刘敏艳等[98]的研究表明,高温闷棚与多菌灵联合作用对西瓜枯萎病和茄子黄萎病的防治效果均超过90%,而用多菌灵灌根对西瓜枯萎病和茄子黄萎病的防治效果仅分别为67.08%和68.86%。董海龙等[99]的研究表明,高温闷棚时在土壤中添加石灰氮,与单一闷棚组进行比较,120 d后对黄瓜根结线虫的防治率提高了60%,产量增加了5.7%。因此,防治地下害虫时,也可以考虑在塑料膜下安装滴管施药,与土壤日晒联合作用,既可减少药剂的用量,又可加速害虫死亡。此外,土壤日晒还可以与其他物理设备联合使用,如日晒时浇灌热水加速或协同升温消灭土壤中的病虫草害[72]。2018年,北京理工大學和中国农业科学院合作研发出利用菲涅尔透镜聚光器再生太阳能的土壤消毒装置,可将土壤最高温度保持在85℃,有效杀灭土壤中的病原菌、害虫和卵[43]。
  总体而言,目前土壤日晒技术在我国农业生产上的应用仍然处于初级阶段。因此,土壤日晒的实用价值还需要进一步评估,比如对病虫草害的防治管理[4]、对作物生长和产量的影响[100]、对农药和肥料减量的可预见性[101]、对经济成本和经济效益的评价[102]等。另外,也要考虑有害生物对土壤日晒产生的抗性[103105]。随着人们对食品安全、生活环境、生态健康的广泛关注,土壤日晒技术配套其他有害生物的防治途径在农业上的作用将变得越来越重要。土壤日晒技术作为一种经济易学、操作简单、绿色环保的农业技术,与其他物理、化学和生物防治手段配合使用,或将成为今后世界农业绿色防治道路上的一项新举措,意义深远,潜力巨大。   參考文献
  [1] KATAN J. The methyl bromide issue: Problems and potential solutions [J].Journal of Plant Pathology, 1999, 81(3): 153159.
  [2] ELSAYED S F, ABDELWAHAB A, ELTAWEEL H H. Effect of biofertilization and sterilization on cucumber production under plastic house conditions [J]. Middle East Journal of Agriculture Research, 2016, 5(2): 186200.
  [3] OLDFIELD T L, ACHMON Y, PERANO K M, et al. A life cycle assessment of biosolarization as a valorization pathway for tomato pomace utilization in California [J]. Journal of Cleaner Production, 2017, 141: 146156.
  [4] DAI Y Y, SENGE M, YOSHIYAMA K, et al. Influencing factors, effects and development prospect of soil solarization[J]. Reviews in Agricultural Science, 2016, 4: 2135.
  [5] SHI Kai, WANG Li, ZHOU Yanhong, et al. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f.sp. cucumberinum[J]. Chemosphere, 2009, 75(7): 872877.
  [6] PEDRO D, LUIS M, CARMEN S, et al. Soil biosolarization for sustainable strawberry production [J]. Agronomy for Sustainable Development, 2014, 34(4): 821829.
  [7] SHINMURA A. Causal agent and control of root rot of Welsh onion (in Japanese)[J]. PSJ Soilborne Disease Workshop Report, 2000, 20:133143.
  [8] BLOK W J, LAMERS J G, TERMORSHUIZEN A J, et al. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping [J]. Phytopathologia, 2000, 90: 253259.
  [9] KATAN J. Soil solarization: the idea, the research and its development [J]. Phytoparasitica, 2015, 43(1): 14.
  [10]HODSON A, LEWIS E. Managing for soil health can suppress pests [J]. California Agriculture, 2016, 70(3): 137141.
  [11]YAMFANG M, THEPA S, KONGKIATTIKAJORN J. Development of a solar hot water system and investigation of the effects of soil density to inhibit microbial performance in soil with hot water dropping [J]. Renewable Energy, 2018, 117: 2836.
  [12]OZ H, COSKAN A, ATILGAN A. Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: new solarization cover material [J]. Journal of Polymers and the Environment, 2017, 25(2): 370377.
  [13]KOKALISBURELLE N, ROSSKOPF E N, BUTLER D M, et al. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops[J]. Journal of Nematology, 2016, 48(3): 183192.
  [14]ROURMICHOLLET D, CZARNES S, ADAM B, et al. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil [J]. Soil Biology and Biochemistry, 2008, 40(7): 18361845.   [15]MURASE J, SHINOHARA Y, YOKOE K, et al. Impact of soil solarization on the ciliate community structure of a greenhouse soil [J]. Soil Science and Plant Nutrition, 2015, 61(6): 927933.
  [16]LUVISI A, PANATTONI A, MATERAZZI A. Heat treatments for sustainable control of soil viruses [J]. Agronomy for Sustainable Development, 2015, 35(2): 657666.
  [17]CHAUHAN H, DHRUJ I U, CHAUHAN P M. Development of soil profile temperature prediction models for bare and solarized field conditions [J]. Scientific Journal Agricultural Engineering, 2015, 2: 8190.
  [18]KATAN J. Diseases caused by soilborne pathogens: biology, management and challenges[J]. Journal of Plant Pathology, 2017, 99(2): 305315.
  [19]CANDIDO V, D’ADDABBO T, MICCOLIS V, et al. Weed control and yield response of soil solarization with different plastic films in lettuce [J].Scientia Horticulturae,2011,130(3):491497.
  [20]KATAN J, GREEBERGER A, ALSON H, et al. Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens[J]. Phytopathology, 1976, 66(5): 683688.
  [21]FENOLL J, HELLIN P, FLORES P, et al. Solarization and biosolarization using organic wastes for the bioremediation of soil polluted with terbuthylazine and linuron residues [J]. Journal of Environmental Management, 2014, 143: 106112.
  [22]YUCEL S, OZARSLANDAN A, CAN C. Effect of soil solarization combined with reduced doses of the fumigant metam sodium on management of some soil borne pathogens and rootknot nematode of pepper grown in greenhouse [J]. Net Journal of Agricultural Science, 2017, 5(2): 3137.
  [23]SIMMONS C W, GUO H, CLAYPOOL J T, et al. Managing compost stability and amendment to soil to enhance soil heating during soil solarization [J].Waste Management,2013,33:10901096.
  [24]ACHMON Y, HARROLD D R, CLAYPOOL J T, et al. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization [J]. Waste Management, 2016, 48: 156164.
  [25]FERNANDEZBAYO J D, ACHMON Y, HARROLD D R, et al. Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy [J].Agricultural and Food Chemistry,2017,65(17):34343442.
  [26]YOKOE K, MAESAKA M, MURASE J, et al. Solarization makes a great impact on the abundance and composition of microbial communities in soil [J]. Soil Science and Plant Nutrition, 2015, 61(4): 641652.
  [27]KANAAN H, MINZ D, MEDINA S, et al. The interdependent effects of solar disinfestation and compost maturity level on soil microbial activity [J]. Phytoparasitica, 2016, 44(1): 5564.   [28]HANSON K, MAHATO T, SCHUCH U K. Soil solarization in high tunnels in the semiarid southwestern united states [J]. HortScience, 2014, 49(9): 11651170.
  [29]NARESH P, RATAN V, KUMAR V, et al. Effect of soil solarisation for the control soil born pathogen S. rolfsii causing stem rot of chilli (Capsicum annuum L.)[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10): 49134917.
  [30]CASTELLO I, D’EMILIO A, RAVIV M, et al. Soil solarization as a sustainable solution to control tomato Pseudomonads infections in greenhouses [J]. Agronomy for Sustainable Development, 2017, 37(6): 59.
  [31]KANAAN H, MEDINA S, KRASSNOVSKY A, et al. Survival of Macrophomina phaseolina s.l. and Verticillium dahliae during solarization as affected by composts of various maturities [J]. Crop Protection, 2015, 76: 108113.
  [32]DIAZHERNANDEZ S, GALLOLLOBET L, DOMINGUEZCORREA P, et al. Effect of repeated cycles of soil solarization and biosolarization on corky root, weeds and fruit yield in screenhouse tomatoes under subtropical climate conditions in the Canary Islands [J]. Crop Protection, 2017, 94: 2027.
  [33]MEENA R D, LAL G, MEHTA P, et al. Efficacy of soil solarization on growth and yield of cumin (Cuminum cyminum L.)under arid conditions[J]. International Journal of Seed Spices, 2018, 8(1): 7479.
  [34]KANAAN H, MEDINA S, RAVIV M. The Effects of soil solarization and compost on soil suppressiveness against Fusarium oxysporum f. sp. melonis [J]. Compost Science & Utilization, 2017, 25(3): 206210.
  [35]ABADA K A, ABDELLATIF F M, ELDAKAR H A M. Effect of combination among bioagents, compost and soil solarization on management of strawberry Fusarium wilt [J].American Journal of Life Sciences, 2014, 2(6/2): 3946.
  [36]GILARDI G, DEMARCHI S, GULLINO M L, et al. Effect of simulated soil solarization and organic amendments on Fusarium wilt of rocket and basil under controlled conditions [J]. Journal of Phytopathology, 2014, 162(9): 557566.
  [37]PARKE J L, FUNAHASHI F, WEIDMAN C, et al. Relative heat sensitivities of certain Phytophthora spp. and the potential for soil solarization to disinfest nursery beds in west coast states [C]∥Proceedings of the Sudden Oak Death Sixth Science Symposium, 2016, 6: 4950.
  [38]NEOGI M G, SALAH UDDIN A K M, UDDIN M T, et al. Effect of seedbed solarization on plant growth and yield of two rice varietiesBR11 and BRRI Dhan33 [J]. Journal of the Bangladesh Agricultural University, 2017, 15(1): 5559.   [39]SIMMONS C W, CLAYPOOL J T, MARSHALL M N, et al. Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter [J]. Applied Soil Ecology, 2014, 73: 97104.
  [40]YAO Yanlai, XUE Zhiyong, HONG Chunlai, et al. Efficiency of different solarizationbased ecological soil treatments on the control of Fusarium wilt and their impacts on the soil microbial community [J]. Applied Soil Ecology, 2016, 108: 341351.
  [41]GUPTA S, SINGH R P, RAUTELA P. Effect of soil solarisation on survival of sclerotia and viability of antagonists under protected and natural cultivation [J]. Journal of Pharmacognosy and Phytochemistry, 2017, 6(5): 387390.
  [42]TJAMOS E C, PAPLOMATAS E J. Longterm effect of soil solarization in controlling verticillium wilt of globe artichokes in Greece [J]. Plant Pathology, 2010, 37(4): 507515.
  [43]ZHAO Y, ZHENG H, MA X, et al. Regenerative solar soil sterilizing system with the Fresnel lens concentrator [J]. Applied Thermal Engineering, 2018, 142: 674682.
  [44]SHI Caihua, HU Jingrong, WEI Qiwen, et al. Control of Bradysia odoriphaga (Diptera: Sciaridae) by soil solarization[J]. Crop Protection, 2018, 114: 7682.
  [45]SEID A, FININSA C, MEKETE T, et al. Tomato (Solanum lycopersicum) and rootknot nematodes (Meloidogyne spp.): a centuryold battle [J]. Nematology, 2015, 17(9): 9951009.
  [46]NCHORE S B, WACEKE J W, BUTTNER C, et al. Efficacy of soil solarization and selected organic amendments for the control of rootknot nematodes in African nightshades [J]. RUFORUM Working Document Series,2016,14(1):771777.
  [47]MCSORLEY R, GILL H K. Effects of solarization against weeds and rookknot nematodes limited by weather [J].Proceeding of Florida State Horticultural Society,2010,123:298301.
  [48]HAJJIHEDFI L, REBAI E, LARAYEDH A, et al. Biological control of Meloidogyne javanica on tomato with Dazitol and soil solarization [J]. Environmental Science and Pollution Research, 2018, 25: 1727817282.
  [49]GILL H K. Soil solarization: a natural pest management strategy [J]. Popular Kheti, 2014, 2: 153157.
  [50]GAMLIEL A. Application of soil solarization in the open field[M]∥GAMLIEL B, KATAN J. Soil Solarization: Theory and Practice, 2012: 175180.
  [51]BAHADUR S, VERMA S K, PRASAD S K, et al. Ecofriendly weed management for sustainable crop productionA review [J]. Journal Crop and Weed, 2015, 11(1): 181189.
  [52]GILL H K, MCSORLEY R, TREADWELL D D. Comparative performance of different plastic films for soil solarization and weed suppression [J]. HortTechnology 2009, 19(4): 769774.   [53]YILDIZ A, BENLIOGLU S, BOZ O, et al. Use of different plastics for soil solarization in strawberry growth and timetemperature relationships for the control of Macrophomina phaseolina and weeds [J].Phytoparasitica,2010,38(5):463473.
  [54]SETYOWATI N, NURJANAH U, MUKTAMAR Z, et al. Weed seed inhibition under solarization treatment with different mulch color in tropical highland organic farming system[J]. International Journal on Advanced Science Engineering Information Technology, 2017, 7(5): 18941899.
  [55]SAMTANI J B, DERR J, CONWAY M A, et al. Evaluating soil solarization for weed control and strawberry (Fragaria xananassa) yield in annual plasticulture production [J]. Weed Technology, 2017, 31(3): 455463.
  [56]MORRA L, CARRIERI R, FORNASIER F, et al. Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility [J]. Applied Soil Ecology, 2018, 126: 6574.
  [57]GELSOMINO A, BADALUCCO L, LANDI L, et al. Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment [J]. Plant and Soil, 2006, 279(1/2): 307325.
  [58]IHARA H, KATO N, TAKAHASHI S, et al. Effect of soil solarization on subsequent nitrification activity at elevated temperatures [J]. Soil Science and Plant Nutrition, 2014, 60(6): 824831.
  [59]CIMEN I, BASARAN M. Effect of solarization with fresh chicken manure on verticillium wilt (Verticillium dahliae Klebb) and yield in eggplant [J]. African Journal of Biotechnology, 2016, 15(52): 28042813.
  [60]KANAAN H, FRENK S, RAVIV M, et al. Long and short term effects of solarization on soil microbiome and agricultural production [J]. Applied Soil Ecology, 2018, 124: 5461.
  [61]YILMAZ S, CELIK I, ZENGIN S. Combining effects of soil solarization and grafting on plant yield and soilborne pathogens in cucumber[J]. International Journal of Plant Production, 2011, 5(1): 95104.
  [62]CARRIERI R, RAIMO F, PENTANGELO A, et al. Fusarium proliferatum and Fusarium tricinctum as causal agents of pink rot of onion bulbs and the effect of soil solarization combined with compost amendment in controlling their infections in field [J]. Crop Protection, 2013, 43: 3137.
  [63]DOMINGUEZ P, MIRANDA L, SORIA C, et al. Soil biosolarization for sustainable strawberry production [J]. Agronomy for Sustainable Development, 2014, 34(4): 821829.
  [64]ZAYED M S, HASSANEIN M K K, ESA N H, et al. Productivity of pepper crop (Capsicum annuum L.) as affected by organic fertilizer, soil solarization, and endomycorrhizae [J]. Annals of Agricultural Sciences, 2013, 58(2): 131137.   [65]LI Hui, YE Dandan, WANG Xugao, et al. Soil bacterial communities of different natural forest types in northeast China[J]. Plant and Soil, 2014, 383(1/2): 203216.
  [66]AMIN M, AMARE A, SELVARAJ T. Evaluation of various fungicides and soil solarization practices for the management of common bean anthracnose (Colletotrichum lindemuthianum)and seed yield and loss in Hararghe Highlands of Ethiopia [J]. Journal of Plant Breeding and Crop Science, 2014, 6(1): 110.
  [67]CASTRONUOVO D, CANDIDO V, MARGIOTTA S, et al. Potential of a corn starchbased biodegradable plastic film for soil solarization [J]. Acta Horticulturae, 2005, 698: 201.
  [68]HAM J M, KLUITENBERG G J, LAMONT W J. Optical properties of plastic mulches affect the field temperature regime[J]. Journal of the American Society for Horticultural Science, 1993, 118(2): 188193.
  [69]PINKERTON J N, IVORS K L, MILLER M L, et al. Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon[J]. Plant Disease, 2000, 84(9): 952960.
  [70]D’EMILIO A. Predictive model of soil temperatures and moisture during solarization in closed greenhouse [J]. American Society of Agricultural and Biological Engineers, 2014, 57(6): 18171830.
  [71]HASSANAIN N A, HASSANAIN M A, ABDELZAHER F H, et al. Decontamination of enteric pathogens in sewage irrigated soil by solarization and desiccation [J]. AmericanEurasian Journal of Agricultural & Environmental Sciences, 2014, 14: 894898.
  [72]MORMILE P, RIPPA M, PETTI L, et al. Improvement of soil solarization through a hybrid system simulating a solar hot water panel[J]. Journal of Advanced Agricultural Technologies, 2016, 3(3): 226230.
  [73]MAHRER Y, SHILO E. Physical principles of solar heating of soils [M]∥Soil Solarization: Theory and Practice, 2012: 147152.
  [74]FUNAHASHI F, PARKE J L. Effects of soil solarization and Trichoderma asperellum on soilborne inoculum of Phytophthora ramorum and Phytophthora pini in container nurseries [J]. Plant Disease, 2016, 100(2): 438443.
  [75]ALKARAGHOULI A, ALKAYSSI A W. Influence of soil moisture content on soil solarization efficiency [J]. Renewable Energy, 2001, 24(1): 131144.
  [76]BOHRA M D, HARSH L N, LODHA S. Solar heating for controlling pathogens of jojoba(Simmondsia chinensis) in nursery soils [J]. Indian Journal of Agricultural Sciences, 1996, 66(11): 679683.
  [77]DEVAY J E, KATAN J. Mechanisms of pathogen control in solarized soils [M]∥KATAN J, DEVAY J E.Soil solarization. London, UK: CRC Press, 1991:97101.   [78]GIUFFRIDA F, CONSOLI S. Reusing perlite substrates in soilless cultivation: analysis of particle size, hydraulicproperties, and solarization effects[J]. Journal of Irrigation and Drainage Engineering, 2016, 142(2): 04015047.
  [79]STAPLETON J J, DEVAY J E. Soil solarization: a nonchemical approach for management of plant pathogens and pests [J]. Crop Protection, 1986, 5(3): 190198.
  [80]SIMMONS C W, HIGGINS B, STALEY S, et al. The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil [J]. Applied Soil Ecology, 2016, 106: 3746.
  [81]RUBIN B. Soil solarization as a tool for weed management [M]∥GAMLIEL A, KATAN J. Soil Solarization: Theory and Practice. American Phytopathological Society, 2012: 7176.
  [82]VELA N, FENOLL J, NAVARRO G, et al. Trial of solar heating methods (solarization and biosolarization)to reduce persistence of neonicotinoid and diamide insecticides in a semiarid Mediterranean soil [J]. Science of the Total Environment, 2017, 590: 325332.
  [83]CHELLEMI D O, OLSON S M, MITCHELL D J. Effects of soil solarization and fumigation on survival of soilborne pathogens of tomato in northern Florida[J]. Plant Disease, 1995, 78(12): 11671172.
  [84]AREBI B H, AZZABI M Z, AHMED S A. Experimental and theoretical investigation of soil temperature profiles during solarization of mulched and bare soil [J]. Journal of Engineering Research, 2018, 25: 6984.
  [85]D’ADDABBO T, MICCOLIS V, BASILE M, et al. Soil solarization and sustainable agriculture[M]∥LICHTFOUSE E. Sociology, organic farming, climate change and soil science. Springer, Dordrecht, 2010, 3: 217274.
  [86]MARQUEZ J, WANG K H. Soil solarization as an organic preemergent weedmanagement tactic [R]. College of Tropical Agriculture and Human Resources, 2014, 14: 17.
  [87]ALKARAGHOULI A, ALKAYSSI A W, HASSON A M. The photometric properties of different colored plastic mulches used for soil solarization[J]. Solar and Wind Technology, 1990, 7(2/3): 119123.
  [88]MCGOVERN R J, MCSORLEY R. Physical methods of soil sterilization for disease management including soil solarization, environmentally safe approaches to crop disease control [M]∥RECHCIGL N A, RECHCIGL J E. Environmentally safe approaches to crop disease control. CRC Press, Boca Raton, FL, 1997: 283313.
  [89]KOKALISBURELLE N, MCSORLEY R, WANG K H, et al. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems [J].Applied Soil Ecology,2017,119: 6471.   [90]MAHESWARI T U. Weed management in chilli nursery by soil solarizationA novel approach [J]. International Journal of Innovations in Agricultural Sciences, 2017, 1(1): 710.
  [91]OZYILMAZ U, BENLIOGLU K, YILDIZ A, et al. Effects of soil amendments combined with solarization on the soil microbial community in strawberry cultivation using quantitative realtime PCR [J]. Phytoparasitica, 2016, 44(5): 661680.
  [92]QUINTANILLATORNEL M A, WANG K H, TAVARES J, et al. Effects of mulching on above and below ground pests and beneficials in a green onion agroecosystem[J]. Agriculture, Ecosystems and Environment, 2016, 224: 7585.
  [93]張广荣,缪仲梅,薛莉,等.不同土壤添加剂及高温闷棚对防治根结线虫病的影响[J].植物保护,2016,42(1):249252.
  [94]焦永刚,石琳琪,董灵迪,等.不同灌水量和填充物对高温闷棚地温及茄子产量的影响[J].河北农业科学,2009,13(9):3233.
  [95]CHANDEL S. Organic amendment, biocontrol agents and soil solarization practice in management of Fusarium wilt of carnation caused by Fusarium oxysporum Schledit. f.sp. dianthi (Prill. and Del.)Snyd. and Hans [J]. International Journal of Plant Protection, 2015, 8(1): 130133.
  [96]CHAMORRO M, MIRANDA L, DOMINGUEZ P, et al. Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry [J]. Crop Protection, 2015, 67: 279286.
  [97]FENOLL J, GARRIDO I, VELA N, et al. Enhanced degradation of spiroinsecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques [J].Environmental Science and Pollution Research,2017,24(10):92789285.
  [98]刘敏艳,胡冠芳.高温闷棚与多菌灵灌根防治土传病害[J].中国蔬菜,2005(8):2021.
  [99]董海龙,路平,张作刚,等.秸秆+石灰氮+X20菌肥+高温闷棚处理对根结线虫种群数量变化的影响[J].中国农业大学学报,2016,21(4):5258.
  [100]SOFI T A, TEWARI A K, RAZDAN V K, et al. Long term effect of soil solarization on soil properties and cauliflower vigor [J]. Phytoparasitica, 2014, 42(1): 111.
  [101]ALSHAMMARY A A G, ALSADOON J N A, LAHMOD N R. Influence of the soil solarization management and fertilizer on soil temperature under different soil tillage systems[J]. Journal of Agricultural Science, 2016, 8(2): 98108.
  [102]SHLEVIN E, GAMLIEL A, KATAN J, et al. Multistudy analysis of the added benefits of combining soil solarization with fumigants or nonchemical measures [J].Crop Protection, 2018, 111: 5865.
  [103]OKON LEVY N, MELLER HAREL Y, HAILE Z M, et al. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum [J]. Plant Pathology, 2015, 64(2): 365374.
  [104]MEENA A K, THAKUR K D. Effect of soil solarization on chilli wilt caused by Fusarium oxysporum f.sp. capsici [J]. Advance Research Journal of Crop Improvement,2014,5(2): 9396.
  [105]ROMBOLA A G, MARISI G, TORRI C, et al. Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis [J]. Journal of Agricultural and Food Chemistry, 2015, 63(30): 66606667.
  (责任编辑:田 喆)
转载注明来源:https://www.xzbu.com/1/view-14869919.htm