您好, 访客   登录/注册

风力发电及其控制技术初探

来源:用户上传      作者:

  【摘  要】随着我国经济的发展,人们生活水平有很大提高,对电能的需求也越来越高。在能源紧缺的现代,新型发电方式逐渐开发出来,风力发电在近年来运用较为广泛,现代控制技术融入到风力发电中,使得发电效率大大提升。围绕控制技术展开讨论,介绍几种典型的控制技术。相信在科技的发展下,更多的技术会被运用到发电系统中。
  【关键词】风力发电;控制技术
  引言
  风能发电技术是一种环保、无污染的新能源开发技术,利用风力取之不竭、用之不尽的特点,来应对当前日趋枯竭的能源环境。自上世纪七十年代以来,世界上的国家就逐步开始对风力发电技术进行研究,上世纪末,风力发电技术的发展速度令人侧目,世界上风力发电装机容量逐年上升。结合风力发电过程以及发电机控制技术,风力发电系统主要分为变速恒频发电系统和恒速恒频发电系统,而风力发电机的主要运作方式则分为常规电网电源和独立电源两种供电形式。不同的技术所带来的效果各不相同,本文就此进行了相应的论述。
  1我国风力发电的现况
  我国风力发电的发展在技术方面上分为三步,一是引进新技术,二是把技术消化吸收三是进行自主创新。现如今,在这方面我国以快速发展起来。例如,我国的风力制造业不断提升。还有随着国内5WM容量等级风电产品的不断改进,我国的兆瓦级机组在风力发电市场被大量使用。虽然我国的风力发电机组制造业和配置零组件的发展足以满足所需,但是一些高级配置仍然需要从国外进口。所以,培养自主创新能力和不断探索新技术迫在眉睫。
  目前,是创新的年代,是需要快速发展的时代,新能源就是一个活生生的例子。作为新能源的一个重要部分,风力发电近年来的发展越来越好。全球的能源越来越少,之前的能源已经不足人们也已经意识到了这个问题,风力发电无污染,施工时间比较短,投资也不多,而且需要的地区也不多,这就使得各个国家对其越来越关注。在风力发电系统中,并网逆电器是一个非常重要的装置,其特性的好坏决定了发电是否灵活。随着信息技术的发展,人们也将风力发电系统做出了很多改变,使其性能得到了很大改进,促进了其进一步发展。
  2风力发电及其控制技术研究
  2.1微分几何
  该项技术由数学知识演变而来,其包括一定的线性关系,控制过程就是利用这一特性来完成的。此技术的控制原理如下:该数学知识表现出来的系统实际是非线性的,经过某种处理后,成为具有一定功能的线性系统,致使控制技术逐渐趋于完善。对于风力发电本身,其系统本来就是非线性的,风速的大小是人为无法控制的。当使用此技术时,首先要将这一问题进行解决。然后是对双馈发电机的各项操作,主要是对经过电机的各项数据进行反馈解耦,这一过程需要将非线性情况向线性转化,从而实现动态解耦。这对发电效率的提升非常有帮助,装置能够尽可能多的捕获风能。
  若风速过大,需要将电机的转速适当调低,这样才能保持其功率不变。通过一系列的步骤,装置将很好地完成向线性关系转化的过程,根据这一关系,可设计出符合实际情况的发电机组,减少企业成本的同时,保持充足的电能供应。现行控制的精确程度很高,但计算过程中会遇到阻碍。且该技术对CPU的要求很高,普通的CPU无法使用到此技术当中。目前研究人员正在攻克两类难题,可见该项技术具有广阔的发展空间。
  2.2变速恒频发电系统
  简单来说,该系统的控制方式就是风力机采取变速运行的模式,发电机的转速随风速变化而变化,但可以通过电力电子变换装置得到恒频电能。根据贝兹理论,理想情况下风能所能转换成动能的极限比值为16/27约为59%。
  恒速恒频发电系统的所采用的风力发电机只能固定在某一转速上,但是风能具有一定的随机性,其能效会受周围环境的影响而变化,所以风力机必定会偏离最佳速度,这就必然会在一定程度上降低发电效率,而变速恒频发电系统就能够在风速变化的条件下,来适当调节转速,从而让其一直保持着在理想的转速下运行,确保发电效率。变速恒频发电系统是目前主流的风力发电机组控制系统,对于风力发电系统而语言,风力发电机组应该尽可能的确保能量转换效率,而变速恒频发电系统主要通过控制电机转矩,来实现高效率的能源转换。
  2.3自适应与滑模变结构
  该项技术运用到发电过程中,可以捕捉系统快速变化的各项数据,将系统处于实时监测之下,实现对各运行参数的良好把控。该技术的工作原理如下:系统运行过程当中,若发现明显的波动,此技术控制的监测装置就能精确捕捉到这一点,然后系统对该突变点进行分析,根据分析结果对发电装置的相关速度参数进行适当调整,保证发电过程的顺利进行。在以往的系统当中,若想控制运行速度,需要先建立起相应的虚拟模型,由于数据变化的无规律性,模型的建立是非常困难的。错误的模型会误导工作人员,这对速度的控制是非常不利的。该项技术的出现很好解决了这一问题,自适应也是目前在风里发电中应用最多的技术之一。
  此项技术的最大特点,就是对各种切换开关的灵活控制。当系统运行不再需要这一档速度时,该结构接收到系统传来的相关变档信息,然后做出反应,自动将该档位的开关闭合,打开系统需要的相应档位开关。系统运行中,人员无需对发电装置重启,即可实现对装置换挡的控制。该技术的特点主要体现在这几点:设计简单,并不需要过于复杂的结构;可随时进行相应的切换工作,具有较强的灵活性;系统参数变化时,不会影响到该结构的正常控制,具有很强的稳定性。该技术能够将自然干扰与装置隔离开来,最大程度保证发电过程正常进行,没有外界环境的影响,系统将会处于非常稳定的狀态。
  2.4双馈发电变速恒频系统
  双馈发电变速恒频系统是使用双馈绕线式发电机的风力发电机组,所谓双馈,指的是双端口馈电,定子和转子可同时发电,互相切割磁感线。通常来说,双馈电机必须配合变频器使用,变频器给双馈电机转子施加转差频率电流,起到励磁的作用,有效调节励磁电流的相位、频率、幅值,实现稳定的定子恒频输出。在风力发电系统中,无论风力作出什么样的变化,当电机转速改变的时候,利用变频器就可调整旋转速度,从而让电机的转速和风速之中保持同步(转子励磁电流改变转子磁势)。该系统主要是依靠转子侧来实现的,通过转子电路的功率由交流励磁发电机转速运行来决定,所以该系统的成本较低,设计较为简便,且后期的维护也十分便捷。另外,该系统还能吸收更多无功功率,可有效解决电压升高的弊端,从而有效提升电网运作效率,保障电能换换质量以及稳定性。
  2.5无刷双馈发电系统
  无刷双馈发电系统是目前风力发电中的新型控制系统,其运作原理和传统交流电机差别较大,无刷双馈发电系统中的电子定子,具有两套不同极数的三组绕组,可分别称为控制绕组和功率绕组,通过电机转子的磁动势来实现能量转换,如果改变相应的频率以及相位,就可改变电机的运行方式。无刷双馈发电系统和普通系统的主要区别在于,电机定子上有一套控制绕组,可通过调节绕组上的电流频率来改变转速,不过该技术的制造成本较高,并且无刷双馈发电系统的体积较大。
  结语
  以上是对现代控制技术的详细介绍。通过对几类典型技术的分析,可看出其在风力发电过程中发挥的重要作用。新型技术的融入,使风力发电摆脱人工操作的局限性,逐渐朝着自动化方向发展。对功率、风速等的有效控制,将发电机保持在最佳工作状态,且大大延长桨叶、电机等装置的使用周期。在科技的支撑下,控制技术还有很大发展空间。
  参考文献:
  [1]黄建峰.全球风力发电的现状及展望[J].动力与电气工程,2013.
  [2]方永,胡明辅.风力发电的现状与进展[J].可再生能源,2013.
  [3]刘彦东.风力发电现状及对策[J].内蒙古石油化工,2012.
  (作者单位:国网太原供电公司)
转载注明来源:https://www.xzbu.com/1/view-14925037.htm