数学教学中培养学生发散思维的探讨
来源:用户上传
作者:
发散思维是一种不依常规,寻求变异,从多方面寻求答案的思维方式,不受现代知识的局限,不受传统知识的束缚,与创造力有着直接联系,是创造性思维的核心,培养学生的发散思维能力是培养学生的创造力的重要环节。
在数学教学中,我采取以下几种方式培养学生的发展思维。
一、发散性提问
思维是从问题的提出开始的,发散性提问可以直接激励学生进行积极的思维活动,这种提问追求的目的不是单一的答案,而是尽可能多、尽可能新的独创的想法,因而对培养学生的创造性思维,具有更直接、更现实的意义。
如:用语言叙述代数式a・(bc),可以这样提问:“你能用几种不同的方式叙述这个代数式?”这时,全班同学纷纷举手要求发言。“a乘以b除以c的商的积是多少?”,“a与b除以c的商的积是多少?”,“a乘以c除b的商,积是多少?”,b除以c的商和a的积是多少?同学们想出了许多不同的叙述方式,显示出思维非常活跃。
二、一题多解
一题多解之所以有助于发散思维的培养,主要是因为它要求学生的思维活动要“多问”,不局限于单一角度,不受一种思路的束缚,为了寻求问题的解决,它要求寻找多样化的解决方式,谋求多种可能的解题新途径。
如:求证三角形的三个内角和等于180°。在学生预习的基础上进行重点讲解后,启发学生给出添加辅助线的目的和思考方法,当学生掌握了课本上的证明方法后,在向学生提出,是否还有别的方法也能证明这个定理?启发学生积极思维,结果同学们相继找出如下的四种添加辅助线的证明方法。
这时全班同学都高兴的笑起来,我对想出了不同解法的同学表示了热烈祝贺和鼓励,一题多解不仅培养了学生的发散思维能力,也极大的激发了学生学习数学的积极性和浓厚的兴趣。
三、延迟评价
延迟评价可以给学生创设一种畅所欲言、互相启发的环境,使学生在有限的时间内寻找出尽可能多的创造性设想,因而有助于培养学生的发散思维能力。例如有这样一道题:“已知x2+x-1=0,求代数式x3+2x2+3值”。同学们先想出了两种竖式除法可得:
(1)x3+2x2+3=(x+1)(x2+x-1)+4=0・(x+1)+4=4;
(2)因为x2+x-1=0,
则原式=(x3+x2-x)+(x2+x+3)=x(x2+x-1)+(x2+x-1)+4=4,这时又有一个同学想出第三种解法,
因为x2+x-1=0,所以x2+x=1,
所以原式=(x3+x2)+x2+3=x(x2+x)+x2+3=1+3=4,我继续启发学生是否还有其他解法?大家经过讨论又想出了第四种解法,
因为x2+x-1=0,所以x2=1--x,x3=x(1--x)=x-x2=x-(1--x)=2x-1,2x2=2(1--x)=2-2x,则原式=(2x-1)+(2-2x)+3=4。这样大家就共讨论出四种解法。学生寻求答案,特别是新颖独特的解法,要有个思维过程。这个过程就像机器启动一样,是慢慢展开的,在学生思维启动的过程中,别人的、特别是教师的过早评价,往往会成为思维展开的抑制因素,正因为如此我们课堂上应当表现出极大的耐心,给学生充分的时间,让他们驰骋联想,各抒己见。在这种情况下,学生们会有一种安全感、自由感,从而无拘无束毫无顾虑地针对问题展开积极的思维活动和语言活动,起到相互启发和诱导作用。
四、集体讨论
在课堂教学中有时也可采取集体讨论的方法来培养学生的发散性思维,集体讨论可分为2人小组、4人小组或全班讨论,这样的讨论没有老师的介入,有利于学生畅所欲言,集思广益,从而引发创造性思维的产生。在集体讨论中,学生的思维处于积极状态,所以集体讨论对思维能力的培养是有益的,对学生真正理解数学知识也是有益的,从表面上看,集体讨论时似乎课堂秩序有点乱,但如果学生真正是在讨论,甚至是大声争论,那就是学生生动活泼主动学习的体现。
这是我对数学教学中发散思维的初步尝试,由于自己水平有限,能力有限,实际上并不成熟,但我会在今后的教学中继续努力探讨,使之日趋完善,达到新的水平。
转载注明来源:https://www.xzbu.com/1/view-255216.htm