桩基检测技术现状与发展
来源:用户上传
作者:
摘 要: 简要说明各种桩基检测方法以及目前桩基检测技术的主要方法及其存在的局限性。
关键词:高应动力试验法,应力波反射法
随着我国城乡建设事业的迅速发展,桩基工程越来越多,因而桩基工程检测技术也就成为一个热门而得到广泛重视。目前,国内外关于桩基检测技术的发展是多方面的,本文主要介绍目前较普遍的桩基检测技术:静载试验法、声波透射法、应力波反射法、高应变动力试桩法。
一、静载试验法
这是最传统的桩基检测方法,其包含堆载法和锚杆法两种。两种方法都是采用油千斤压顶在桩顶施加荷载,而千斤顶反力,前者通过反力架上的堆重平衡,后者通过反力架将反力传给锚桩,与锚桩的抗拔力平衡。其存在的主要问题是:前者必须解决几百吨甚至上千吨的荷载来源、堆放及运输问题,后者必须设置多根锚桩及反力大梁,不仅所需费用昂贵,时间较长,而且易吨位和场地条件的限制(堆载法目前国内试桩最大极限承载力仅达3000吨,锚桩法的试桩最大极限承载力也不超过4000吨),以致许多大吨位桩和特殊场地的桩(如山地、桥桩)的承载力往往得不到准确数据,桩基的潜力不能合理发挥这是桩基领域面临的一大难题。
近年来,试验吨位有了很大提高,对于大吨位的桩,在桩底埋设千斤顶和传感器进行载荷试验。2002东南大学土木工程学院在理论研究的基础上,教授龚维明博士的专利技术---自平衡测桩法,开始试验并已应用。
我国自动加载和记录系统的出现,是近几年的事情,但对静载试验法的成熟应用而言,这是一个可喜的进步,因为它确保了试验成果的真实性和分析结果的方便性,据悉我国许多省市都开始了在这种基础上进行有效管理。
二、声波透射法方面
这也是一项传统的技术,以前应用并不广泛,但随着近几年来交通系统投资的增加,以桥桩为代表的各种大直径钻孔灌注桩的大量涌现,声波透射法在国内已得到越来越广泛的应用,在这种方法的应用过程中,数字化声波仪已取代了传统的模拟声波仪,不仅在使用的方便程度上有了质的飞跃,而且分析手段有了很大提高,声时判读已不再是唯一的选择,声幅和声频已开始进入了分析判断领域,尤其令人欣慰的是,声波CT已步入实用阶段,为声波透射法的后续研究提供了广阔的前景。
三、应力波反射法
应力波反射法是我国低应变动测桩法之一,主要用来检查桩身完整性,检查缩径、扩径、夹泥、断桩、空洞、离析、沉渣,并核对桩长、推算砼强度。近年来国内外对其实用和普及方面有较大提高,国产桩基动测仪和配套用传感器已达到或接近国外先进仪器,开始使这种方法的应用回归到一种正常的位置。
现在重点介绍应力反射波法:应力反射波法是以应力波在桩身中的传播反射特征为理论基础的一种方法。该方法将桩假定为连续弹性的一维截面均质杆件,并且不考虑桩周土体对沿桩身传播应力波的影响。当在桩顶施加一瞬态锤击振力,将在桩内激发应力波,由于桩与周土之间的波阻抗差异悬殊,应力波的大部分能量将在桩内传播,当波长L>>桩径D,应力波波长λ>>D时,桩可以看作一维杆件,垂直入射的应力波在桩内传播过程中,当桩内存在有波阻抗差异界面时,波将产生反射波和透射波,反射波将沿桩身反向传播到桩顶,而透射波继续向下传播。桩身的缺陷、桩底均可以根据反射波的相位、振幅、频率特性,辅以地层资料、施工记录以及实践分析经验,对其性质作出确切的判断。
反射波法动力测桩,以其测点广、经济、快捷、无损等诸多优点,成为目前人们所公认的桩基质量检测的有效方法,但也存在着缺点和不足。
1. 桩周土层对波形曲线的影响,在对桩基测试曲线进行分析时,要充分考虑到桩周土层对所采集波形曲线的影响。在桩基动测中,检测人员往往注意到桩本身的子波叠加而引起的缺陷判断,而忽略了应力波在桩中传播时,不仅受桩身材料、刚度及缺陷的影响。桩周土层的土力学性能越好,应力波在桩周土层中的损耗就越大。同时受桩周土层的土模量大小的影响。在硬土层处将会产生为似扩径的反射波,在软土层处将会产生由于应力波透射损耗小而产生似缩径的反射波。如果不考虑桩周土层对所采集曲线的影响,不了解桩侧的土质情况,有时会造成误判;
2. 较难识别桩身浅部的缺陷,因为在本质无论大桩还是小桩,桩顶近端都不可以完全套用一维应力波理论,应该用三维效应展开讨论;
3. 缺乏对缺陷程度的定量分析。应力波反射法靠单一的波形特征,要想定量给出离析段厚度、沉渣厚度、裂隙宽度及缩径程度的准确值是不可能的;
4. 第二缺陷的判断。当第一缺陷较大时,阻断了信号的上行与下达,给深部缺陷和桩底的识别增加了困难,特别是当第二缺陷为第一缺陷的两倍时更难以识别;
5. 渐变的缺陷。对于桩径缓慢变大然后突然缩径的桩,在曲线上往往不能分辨出扩径现象而只看到缩径现象,对于这种突变的桩,在曲线上表现为缩径的信号。
四、高应变动力试验法
高应变动力测试是通过在桩顶量测被激发的阻力产生的应力波和速度波,来确定承载力的。目前工程界应用最广泛的高应变法是CASE法和波形拟合法。
1. CASE法是一种通过一维波动方程计算而获得岩土对桩的支撑阻力的新方法。它有三条基本假定:桩身是等阻抗的;桩周与桩尖土对桩的运动阻力分为动阻力和静阻力两部分,动阻力全部集中在桩尖,忽略了桩侧土阻力;静阻力模型为理想刚塑性体,忽略了应力波在传播过程中的能量损耗,包括桩身中内阻尼损耗和向桩周土的逸散。基于以上三条基本假设,由行波理论和波动方程推导出CASE法单桩极限承载力公式:
Rs=R-JC(2Ft1-R)
其中Jc是地区性经验系数,土质不同, Jc凭经验取值的变异性会很大。
2. 波形拟合法波形拟合法目前被认为是确定单桩承载力最准确的方法。它是通过现场把实测力波和速度波输入计算机进行迭代计算,把桩―土系统变为离散的质弹模型,假定各单元桩和土参数,以实测的桩顶速度波(或力波)作为边界条件,用特征线法求解波动方程,反算桩顶力波(或速度波),使计算的波形和实测波形拟合。若两者不吻合,调整桩土参数,再次计算,直至吻合。此时各参数是最佳估算值。最终求得承载力、侧阻分布和计算的Q-S曲线。
高应变法的局限性:
(1)CASE法适用于打入桩的施工过程检测和监控,或者在具有一定的经验基础上,用于评定工程桩的验收合格性。但由于该法的假定条件与基桩施工的实际条件差别较大, 首先,假设桩身等阻抗,这对钢桩、预制桩和预应力管桩在桩身无缺陷的情况下基本适用,而对灌注桩是难以达到;其次,假设动阻力完全集中于桩尖,而实际情况是随着桩的相对位移,桩侧必然产生动阻力,只是相对较小而已;再次,假设静阻力模型为刚塑性体,即桩一旦被打动,则静阻力马上达到极限值,这也与实际不符。所以,CASE法测桩,必须在桩被打动的前提,充分发挥土的全部静阻力,并从波形上正确判断桩尖的反射位置,选用恰当的阻尼系数Jc才可比较准确地确定单桩极限承载力。
(2)波形拟合法虽然和CASE法一样,也是在柴油锤冲击材质均匀、强度较高、侧面光滑的钢管桩、预制桩等基础上建立起来的,它不象CASE法那样严格要求贯入度和侧面光滑与截面的一致性,但当桩间土变形不够充分时,承载力同样偏于保守。而且它假定桩周土体内无变形存在,也极不合理。
(3)高应变动力测试数据采集质量直接关系到计算结果的准确性。正确采集信号是良好结果的前提条件。影响采集信号的因素很多,如桩头处理的好坏、锤击位置及能量大小、传感器安装、外界干扰、仪器本身性质等。
参考文献:
[1]
王雪峰,吴世明.基桩动测技术.北京:科学出版社,2001
张跃明,蔡斌,接智成.桩周土对桩基完整性检测的影响. 华东公路.2003
[1]
王怀元,李德新.高应变动力测桩法在桩基检测中的技术探讨.地质与勘探.1999
转载注明来源:https://www.xzbu.com/2/view-644322.htm