基于毕达哥拉斯模糊Frank算子的多属性决策方法
来源:用户上传
作者:
摘 要:针对毕达哥拉斯模糊环境下的多属性决策问题,提出一种基于毕达哥拉斯模糊Frank算子的多属性决策方法。首先将毕达哥拉斯模糊数和Frank算子相结合,给出了基于Frank算子的运算法则;然后提出了毕达哥拉斯模糊Frank算子,包括毕达哥拉斯模糊Frank加权平均算子和毕达哥拉斯模糊Frank加权几何算子,并讨论了这些算子的性质;最后提出了基于毕达哥拉斯模糊Frank算子的多属性决策方法,将该方法应用于绿色供应商的选择中。实例分析表明,运用该方法可以解决实际的多属性决策问题,并可以进一步应用到风险管理、人工智能等领域。
关键词:毕达哥拉斯模糊数;Frank算子;多属性决策;集结算子
中图分类号: TP18; TP391
文献标志码:A
Abstract: To solve the multi-attribute decision making problems in Pythagorean fuzzy environment, a multi-attribute decision making method based on Pythagorean fuzzy Frank operator was proposed. Firstly, Pythagorean fuzzy number and Frank operator were combined to obtain the operation rule based on Frank operator. Then the Pythagorean fuzzy Frank operator was proposed, including Pythagorean fuzzy Frank weighted average operator and Pythagorean fuzzy Frank weighted geometric operator, and the properties of these operators were discussed. Finally, a multi-attribute decision making method based on Pythagorean fuzzy Frank operator was proposed, which was applied to an example of green supplier selection. The example analysis shows that the proposed method can be used to solve the actual multi-attribute decision making problems, and can be further applied to areas such as risk management and artificial intelligence.
Key words: Pythagorean fuzzy number; Frank operator; multi-attribute decision making; aggregation operator
0 引言
1965年自Zadeh[1]第一次提出模糊集以来,模糊集理论便受到了众多学者的关注,也得到了迅速的发展,广泛应用于社会生产生活的各个方面。随着社会经济的不断发展,客观世界也变得越来越复杂,为了更准确地表达并解释现实世界的问题,众多学者发展并拓展了模糊集的形式,包括区间模糊集[2]、犹豫模糊集[3]、直觉模糊集[4]、区间直觉模糊集[5]等。其中直觉模糊集理论由Atanassov[4]于1986年提出,是对经典 Zadeh模糊集理论最为重要的拓展之一。直觉模糊集用隶属度、非隶属度和犹豫度来详细地刻画现实问题,其理论和应用研究在模糊集领域取得了丰硕的成果,但在直觉模糊环境进行决策时,要求专家给出的评价值的隶属度和非隶属度之和小于1,但现实情况往往并非完全满足,因此,Yager[6]对直觉模糊集进行拓展,提出了毕达哥拉斯模糊集,满足隶属度和非隶属度之和大于1,但其平方和不超过1,使得决策者在决策过程中不必重新修改直觉模糊决策值也可以进行决策。自从毕达哥拉斯模糊集被提出以来,众多学者也对其进行了研究,成为了国内外模糊集研究热点之一。在多属性决策问题中,集成算子是众多决策方法的基础,因此在毕达哥拉斯模糊环境下,集成算子的研究也显得尤为重要,如Wei等[7]提出了毕达哥拉斯模糊幂集成算子,包括:毕达哥拉斯模糊幂平均算子、毕达哥拉斯模糊幂几何算子、毕达哥拉斯模糊幂加权平均算子、毕达哥拉斯模糊幂加权几何算子、毕达哥拉斯模糊幂有序加权平均算子、毕达哥拉斯模糊幂有序加权几何算子、毕达哥拉斯模糊幂混合平均算子以及毕达哥拉斯模糊幂混合几何算子,将其应用于多属性决策中;Zhang等[8]提出了广义毕达哥拉斯模糊Bonferroni 平均算子和广义毕达哥拉斯模糊Bonferroni 几何平均算子;刘卫锋等[9]提出了毕达哥拉斯模糊交叉集成算子,包括毕达哥拉斯模糊交叉加权平均算子和毕达哥拉斯模糊交叉加权几何算子;Garg[10]基于爱因斯坦T模,提出了畢达哥拉斯模糊爱因斯坦加权平均(Pythagorean Fuzzy Einstein Weighted Averaging, PFEWA)算子,毕达哥拉斯模糊爱因斯坦有序加权平均(Pythagorean Fuzzy Einstein Ordered Weighted Averaging, PFEOWA)算子,广义毕达哥拉斯模糊爱因斯坦加权平均(Generalized Pythagoras Fuzzy Einstein Weighted Averaging, GPFEWA)算子和广义毕达哥拉斯模糊爱因斯坦有序加权平均(Generalized Pythagoras Fuzzy Einstein Ordered Weighted Averaging, GPFEOWA)算子;Wei等[11]基于Hamacher T-norm和T-conorm提出了毕达哥拉斯犹豫模糊Hamacher加权平均算子和毕达哥拉斯犹豫模糊Hamacher加权几何算子。通过以上研究梳理可知,上述算子的运算法则基于代数T-norm和代数T-conorm、爱因斯坦T-norm和爱因斯坦T-conorm以及Hamacher T-norm和T-conorm,但这些代数运算法则缺乏一定的灵活性和鲁棒性,而Frank T-norm和Frank T-conorm可以克服其缺陷,因为Frank T-norm和Frank T-conorm具有一般的T-norm和T-conorm的特征,涵盖了代数T-norm和代数T-conorm、爱因斯坦T-norm和爱因斯坦T-conorm以及Hamacher T-norm和T-conorm,是唯一满足兼容性法则的一类T-norm。 目前,Frank T-norm和Frank T-conorm[12]已經广泛应用于模糊集理论中,它们具有一般T-norm和T-conorm的特性,当选取不同参数时,Frank T-norm和Frank T-conorm可以转化成相应的代数T-norm、爱因斯坦T-norm和概率T-norm,学者们基于此将其应用于多属性决策中。如:Yager[13]介绍了多值蕴涵算子的基本性质,并依据两种不同的方法介绍Frank T-norm和Frank S-norm公式;Qin等[14]研究了基于Frank T-norm的多属性决策(Multiple Attribute Decision Making, MADM)问题,其中属性值采用犹豫模糊信息的形式,提出了犹豫模糊Frank有序加权平均(Hesitant Fuzzy Frank Ordered Weighted Averaging,HFFOWA)算子,犹豫模糊Frank混合平均(Hesitant Fuzzy Frank Hybrid Averaging, HFFHA)算子,犹豫模糊Frank加权几何(Hesitant Fuzzy Frank Weighted Geometric, HFFWG)算子,犹豫模糊Frank有序加权几何(Hesitant Fuzzy Frank Ordered Weighted Geometric, HFFOWG)算子以及犹豫模糊Frank混合几何(Hesitant Fuzzy Frank Hybrid Geometric, HFFHG)算子;Peng等[15]提出了语言直觉模糊Frank改进加权Heronian平均(Linguistic Intuitionistic Fuzzy Frank Improved Weighted Heronian Averaging, LIFFIWHA)算子,并基于此算子构建了煤矿安全评价的语言直觉多属性群决策方法;Zhang[16]提出了区间直觉模糊Frank加权平均算子和区间直觉模糊Frank加权几何算子,并将其用于多属性决策中。 Frank T-norm和T-conrom有着比其他的T模和T斜模更多的灵活性,因为其中包含参数,当选用不同参数时,可以得到一些不同的情况,这一点在现实的决策情况中极为重要。
目前,在毕达哥拉斯模糊环境下的Frank算子信息集成问题研究还很少见,其应用于多属性决策问题也比较少,由于毕达哥拉斯模糊集是直觉模糊集的扩展形式,比直觉模糊集能更准确地表达世界的模糊性和不确定性,也能更充分保留专家的评价信息,因而本文将Frank算子与毕达哥拉斯模糊集相结合。本文首先定义了毕达哥拉斯Frank算子的运算法则,然后提出了两种集成算子,建立了基于毕达哥拉斯模糊Frank算子决策模型,最后将其应用于绿色供应商的选择并讨论了参数的现实意义,验证了本文所提出方法的有效性和可行性。
5 结语
在多属性问题决策的过程中,由于现实问题的复杂性,属性值适合用毕达哥拉斯模糊数表示,目前尽管已经有相当多的集结算子被提出,但大多数学者仅仅是基于三角模、概率模或者爱因斯坦模来构建运算法则,这些运算法则缺乏灵活性,因此本文在Frank T-norm和Frank T-conorm的启发下,提出了毕达哥拉斯模糊Frank加权平均(PFFWA)算子和毕达哥拉斯模糊Frank加权几何(PFFWG)算子,构建了新的运算法则,研究了其性质,并建立新的多属性决策方法,分析了不同参数取值情况下的最优排序结果,以实例验证了该方法的可行性。
由于该方法只考虑了单个时期的信息数据,但是在实际决策或评价问题中,原始信息可能来自不同的时期,在今后的研究中,为了集成来自不同时期的信息数据,需要提出新的集成算子以适应现实的决策问题,这为今后的研究提供了思路。
参考文献:
[1] ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353.
[2] TURKSEN I B. Interval valued fuzzy sets based on normal forms [J]. Fuzzy Sets and Systems, 1986, 20(2):191-210.
[3] TORRA V, NARUKAWA Y. On hesitant fuzzy sets and decision [C]// Proceedings of the 2009 IEEE International Conference on Fuzzy Systems. Piscataway, NJ: IEEE, 2009:1378-1382.
[4] ATANASSOV K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[5] ATANASSOV K T, GARGOV g. Interval valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 31(3):343-349.
[6] YAGER R R. Pythagorean membership grades in multi-criteria decision making [J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4): 958-965.
[7] WEI G, LU M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making [J]. International Journal of Intelligent Systems, 2018, 33(1):169-186. [8] ZHANG R, WANG J, ZHU X, et al. Some generalized Pythagorean fuzzy Bonferroni mean aggregation operators with their application to multi-attribute group decision-making [J]. Complexity, 2017, 2017(6):1-16.
[9] 刘卫锋,杜迎雪,常娟.毕达哥拉斯模糊交叉影响集成算子及其决策应用[J].控制与决策,2017,32(6):1033-1040. (LIU W F, DU Y X, CHANG J. Pythagorean fuzzy interaction aggregation operators and applications in decision making [J]. Control & Decision, 2017, 32(6):1033-1040.
[10] GARG H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making [J]. International Journal of Intelligent Systems, 2016, 31(9):886-920.
[11] WEI G, LU M, TANG X, et al. Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 97(3):24-39.
[12] DESCHRIJVER G. Generalized arithmetic operators and their relationship to T-norms in interval-valued fuzzy set theory [J]. Fuzzy Sets and Systems, 2009, 160(21): 3080-3102.
[13] YAGER R R. On some new classes of implication operators and their role in approximate reasoning[J]. Information Sciences, 2004, 167(1/2/3/4): 193-216.
[14] QIN J, LIU X, PEDRYCZ W. Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making [J]. Applied Soft Computing, 2016, 41: 428-452.
[15] PENG H-G, WANG J-Q, CHENG P-F. A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety [J]. International Journal of Machine Learning & Cybernetics, 2018, 9(6): 1053-1068.
[16] ZHANG Z. Interval-valued intuitionistic fuzzy Frank aggregation operators and their applications to multiple attribute group decision making [J]. Neural Computing & Applications, 2017, 28(6): 1471-1501.
[17] PENG X, YANG Y. Some results for Pythagorean fuzzy sets [J]. International Journal of Intelligent Systems, 2015, 30(11): 1133-1160.
[18] XIA M, XU Z, ZHU B. Some issues on intuitionistic fuzzy aggregation operators based on Archimedean T-conorm and T-norm [J]. Knowledge-Based Systems, 2012, 31: 78-88.
[19] WANG W, LIU X. Intuitionistic fuzzy information aggregation using Einstein Operations [J]. IEEE Transactions on Fuzzy Systems, 2012, 20(5): 923-938.
[20] DESCHRIJVER G, KERRE E E. Uninorms in L*-fuzzy set theory [J]. Fuzzy Sets & Systems, 2004, 148(2): 243-262.
[21] LIU P. Some Hamacher Aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making [J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 83-97.
[22] KANNAN D, GOVINDAN K, RAJENDRAN S. Fuzzy axiomatic design approach based green supplier selection: a case study from Singapore [J]. Journal of Cleaner Production, 2015, 96: 194-208.
[23] KUO R J, WANG Y C, TIEN F C. Integration of artificial neural network and MADA methods for green supplier selection [J]. Journal of Cleaner Production, 2010, 18(12): 1161-1170.
[24] 羅新星, 彭素华. 绿色供应链中基于AHP和TOPSIS的供应商评价与选择研究 [J].软科学,2011,25(2):53-56. (LUO X X, PENG S H. Research on the vendor evaluation and selection based on the AHP and TOPSIS in green supply chain [J]. Soft Science, 2011, 25(2): 53-56.)
转载注明来源:https://www.xzbu.com/8/view-14941683.htm