您好, 访客   登录/注册

浅议高中数学概念教学

来源:用户上传      作者: 孙志明

  摘要: 中学数学概念是进行数学逻辑思维的推理、判断、证明的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。数学概念的建立是解决数学问题的前提。本文从数学概念教学的引入、数学概念教学理解与记忆及数学概念的巩固与运用等方面来研究数学概念教学的方法。
  关键词: 数学 概念教学 引入教学 理解与记忆 巩固与运用
  
  1.新概念的引入教学
  学生接受新概念有一个循序渐进的过程,要具有形象直观的感受。中学数学教学中引入新概念的途径是:第一,用实际事例或实物、模型进行介绍,使学生对研究对象的认识由感性到理性,逐步认识它的本质属性,建立起新的概念。例如在教学“棱柱、棱锥、圆柱、圆锥”的概念时,先让学生观察有关的实物、图示、模型,在具有充分的感性认识的基础上再引入概念。第二,从数学内在需要引入概念是一种有效方法。例如一个数的平方为负数,从而引入了虚数,然后对虚数单位进行性质的研究,进行简单的运算,由此引入复数。第三,由旧概念的引申或变形引导出新概念。如向量的模、复数的模与两点间的距离公式、向量的方向、复数的幅角与直线的倾斜角等一些列关联概念。
  2.新概念的理解与记忆
  数学中的新概念教学必须对概念进行仔细分析,讲清数学概念之内涵和外延,沟通知识的内在联系。在讲解新概念前,先给出预习题,使学生了解以下几个方面的问题:这个概念讨论的对象是什么?概念中有哪些规定和条件?与其他概念比较有无容易混淆的地方?它们与过去学过的知识有什么联系?这些规定和条件的确切含义是什么?应当如何理解这些区别?根据概念中的条件和规定,能否归纳出哪些基本性质?各个性质又分别由概念中的哪些因素决定?这些性质在应用中有什么作用?能否派生出一些重要的数学思想方法?例如,关于“角”的概念的深化与系统化,首先罗列出“平面角”、“异面直线所成的角”、“直线与平面所成的角”、“二面角”、“二面角的平面角”各种定义,进行对比。然后对“角”的概念形成一个良好的认知结构,进一步认识到空间“异面直线所成的角”、“直线与平面所成的角”、“二面角”都是在“平面角”概念的基础上发展和推广的;反之,这些空间的角都又是转化为“平面角”来表示的,只有“二面角”是通过“二面角的平面角”来表示。概念讲完后,教师要及时地运用各种手段使学生加深对概念的理解。例如,可以让学生复述定义;也可以举一些相关的例子使学生掌握概念的内涵和外延;还可以同一些相关概念进行比较,以找出它们之间的联系与区别。当学生学习了一定数量的概念后应帮助他们沟通概念间的内在联系,充分揭示知识发展的脉络,把所学的知识加深巩固,并能从数学思想方法的深度去认识它。可用一些三字诀、四字诀等习惯术语帮助记忆,如三角函数的诱导公式,“奇变偶不变,符号看象限”,使学生正确理解并能正确运用数学概念的名称和符号,从而启发学生理解和掌握所学概念。
  概念课教学中,教师应根据概念数学内容和学生实际,提供机会,创造情景,善于提出问题,启发学生积极、主动思考,逐步培养学生独立思考、自主学习的能力,引导学法、培养习惯。正像波利亚所说:教师讲了什么并非不重要,但更重要千万倍的是学生想了些什么,学生的思路应该在学生自己的头脑中产生,教师的作用在于“系统地给学生发现事物的机会”。如,学习等比数列时,可设计启发性思考题,启动学生自主的观察、归纳、概括出等比数列的概念,并把类比的数学思想落到实处,一一引导学生对等差数列、等比数列进行概念类比、内涵对比、外延类比、函数公式的结构类比、概念应用中的解法类比等,使学生在类比和自主探索中学习、理解、掌握等比数列及相关概念。所以在概念教学中,可以引用各种数学思维方式来理解数学概念,这样不仅能提高对数学概念的记忆,而且能强化数学思维模式,使学生真正从数学的角度来理解数学,从数学的整个体系来记忆数学概念。
  教师要突出要素记忆,如“数轴”的三要素:原点、正方向、单位长度。又如函数概念的二要素:定义域与对应法则,最简根式的三要素:根指数与被开方式乘方指数互质、根指数小于被开方式中每一个因式的次数、被开方式不含分母(或分母为1);同类根式的二要素:根指数相同,被开方式相同等等。突出概念的要素,即突出了概念的本质特征,为应有概念创造了条件。如判断两个不同解析式表达的函数是否为同一个函数,学生就可以先比较定义域,若定义域不同,肯定不是同一个函数,若定义域相同,再进一步查对应法则,只有对应法则也相同的两个函数才是同一个函数。数形结合法对理解、掌握及运用这一抽象概念至关重要。如实数绝对值与复数绝对值概念的教学,除讲清定义本身,还一定要把各自的几何意义结合起来学习,如此学生方能更好地把握这两个概念的本质特性,同时,如果能将二者的几何意义一般化,就能为应用绝对值概念解题创造条件。对于易混淆或相关的概念用对比法能更好地揭示概念的特性。如排列与组合、指数与对数、三角函数与反三角函数等概念教学时,用对比法可收到好的效果。排列与组合是两个完全不同的概念。前者与元素顺序有关,而后者则无关,因此,应用场合也就不同了。
  3.新概念的巩固与运用
  用精选实例、设计巧题、加强练习等方法巩固和运用概念,使学生通过概念的掌握与运用,最终掌握数学思想方法。学生认识和形成概念,理解和掌握之后,巩固概念是一个不可缺少的环节。巩固的主要手段是多练习、多运用,只有这样才能沟通概念、定理、法则、性质、公式之间的内存联系。我们可以选择概念性、典型性的习题组,加强概念本质的理解,使学生最终理解和掌握数学思想方法。如学习了“椭圆的第一定义及第二定义”概念之后可举例练习,通过解题巩固原有概念。要使学生牢固地掌握数学概念,必须通过解题、反复运用这些概念,才能使学生在认识上获得巩固加深,培养和提高他们运用概念,分析问题和解决问题的能力。教师还应利用小结加深学生对概念的掌握。教学中,要引导学生善于总结,从一个概念出发,把关联概念、派生概念串连成线,相互对比,既直观形象,又有利于发展学生的创造性思维。
  总之,概念是最基本的思维方式,概念的教学及学生对概念的学习是学习数学的基础,值得好好地研究。因此,在中学数学概念的教学中,只有针对学生实际和概念的具体特点,注重引入,加强分析,重视训练,辅以灵活多样的教法,使学生准确地理解和掌握概念,才能有效地提高数学教学质量。


转载注明来源:https://www.xzbu.com/9/view-992361.htm