木质素及其模型化合物氧化裂解催化剂的研究进展
来源:用户上传
作者:
摘 要: 木质素是绿色可持续的再生资源,但结构复杂,是通过C-O和C-C键交织相连的大分子化合物,通过化学转化可以得到系列的高附加值的化學品。通过将转化中的催化剂类型分类,对木质素及其模型化合物氧化裂解催化剂的研究进展进行综述。
关 键 词:木质素;木质素模型化合物;氧化裂解
中图分类号:TQ 351 文献标识码: A 文章编号: 1671-0460(2019)01-0115-04
Abstract: Lignin is a green, sustainable and renewable resource, but its structure is very complex. It is macromolecular compounds intertwined by C-O and C-C bonds. However, a series of high value-added chemicals can be obtained through chemical conversion. In this paper, according to the types of catalysts, the research progress of oxidative cracking catalyst of lignin and its model compounds was reviewed.
Key words: Lignin; Lignin model compounds; Oxidative cracking
木质素是一类天然芳香族高分子化合物,是通过C-O和C-C键交织相连的大分子化合物,通过各种手段可以将其断裂或者化学转化形成高附加值的化学品、能源和材料。本文拟对木质素及常见木质素模型化合物的氧化反应相关的研究进展进行综述,通过总结催化剂的类型,将相关反应进行综述,为木质素的研究转化提供一定的基础。
1 非均相催化剂催化的氧化断键
最先使用的催化剂有光催化氧化催化剂,例如TiO2[1] 以及负载型的Pt/TiO2 [2]这些催化剂的加入使纸张变得更透明。在TiO2催化剂中添加一点Fe2+可以提高木质素光催化氧化的效率[3],还有包括聚-乙烯基吡啶负载的三氧化甲基钌[4]后者对酚类、非酚类、单体和二聚体木质素模型化合物都有效果[5]。Pd/Al2O3氧化碱性木质素,得到不少香兰素以及丁香醛[6]。氧化铝负载的单金属(Cu)、双金属(Cu-Ni、Cu-Co或Cu-Mn)或三金属(Cu-Ni-Ce),高岭土负载的Cu或Cu-Mn,多金属氧化物(Cu-Co-Mn或Cu-Fe-Mn)这类催化剂对阿魏酸类木质素模型化合物的氧化,研究发现Cu-Ni-Ce/Al2O3催化活性最高,但金属颗粒容易脱落,Cu-Mn/Al2O3的稳定性最好,其次是Cu-Ni-Ce/Al2O3[7]。
2 均相催化剂催化氧化裂解木质素
均相催化剂是和反应体系混溶的,可以很好的促进反应,而且某些均相催化剂可以选择性的氧化某个位置。均相催化剂可以通过调节配体来实现不同的反应活性和特异性。
2.1 金属卟啉类催化剂
Zhu 和 Ford报道了卟啉和酞菁的三价铁和三价镁配合物对木质素模型化合物的氧化作用[8]。同时Artaud课题组也报道了卟啉铁对木质素二聚体模型化合物α,β-二芳基丙烷氧化[9]。这些研究发现金属卟啉氧化α,β-二芳基丙烷是通过四种基本反应进行的:Cα-Cβ侧链断裂、苯-Cα链的断裂、二甲氧基苯环氧化成醌和打开二甲氧基苯环形成粘康酸二甲酯。金属卟啉很明显的缺点就是在过量氧化剂存在下,尤其是在H2O2存在时不稳定。为了增加卟啉的稳定性,通常在卟啉环上引入取代基,可以增加催化剂溶解度[24]或者活性[10,11], 为了克服金属卟啉的降解和损失,通常采用载体对卟啉进行负载从而增加催化剂的稳定性以及循环使用性。有研究将其负载到蒙脱土 [12],聚乙烯 [13],吡啶功能化的聚乙烯醇 [14],咪唑基团的氧化硅等固体上 [15]。这些负载型的卟啉对于发展卟啉类催化剂的应用起着很大的推动作用。
2.2 金属salen类催化剂
Co-salen 络合物的研究最为广泛。Gupta对聚合物负载席夫碱(包括Co-salen)氧化木质素模型化合物的研究进行了综述[16]。Co-salen络合物的强大氧化性主要来源于Co的超氧复合物或者二聚体过氧化物的形成。芳香酚类化合物被氧化成苯醌,产率超过90%[17]。和金属卟啉一样,研究发现通过调节salen配体如引入其它的基团可以改变整个催化剂的溶解性和活性[18]。Co(salen)负载到SBA-15,通过微波的辅助,可以有效地将β-O-4模型化合物转化为酚类化合物[19]。电子顺磁共振研究发现Co-酚羟基自由基参与了整个酚类化合物的氧化过程[20]。
2.3 金属-TAML, -DTNE 和 -TACN类催化剂
Collins报道了铁-TAML这类的氧化剂,TAML 是一种四氨基大环配体,这类氧化剂具有高活性、高选择性的特点[21]。研究发现Fe(TAML)Li/二乙酰碘苯络合物可以选择性地氧化一级和二级醇变成醛,氧化过程中断裂C-C和C-O键[22]。二铁-TAML络合物可以选择性地氧化芳香醇变成芳香醛,这些醇包括苄醇、4-氯苄醇、4-硝基苄醇等[23]。
2.4 杂多酸类催化剂 杂多酸盐(POMs)由两种不同的杂原子组成,其中一种可以决定该POMs的结构,另外一个则通常是过渡金属,这种过渡金属被取代也不会改变整体的结构[24]。因此可以通过改变第二种杂金属的种类,就可以赋予该POMs不同的性质。同样的热力学条件下,POMs具有比木质素高的氧化还原电位但较低的分子氧[25]。通过选择过渡金属,POMs的溶解性可以得到很好的改善,甚至可以溶解在各种极性或非极性溶剂中。α-[SiVW10O40]5-可以将β-O-4类化合物被很好地氧化断裂[26]。Na5(+1.9) [SiV1(-0.1)MoW10(+0.1)]可以催化1-(3,4,5-三甲氧基苯)-乙醇的氧化成醛[27]。最近也有直接将木质素进行氧化断键得到化学品的研究[28]。使用锰取代的杂多酸盐对藜芦醇、香草醇和木质素进行氧化,可以得到对羟基苯甲醛、香草醛、丁香醛等芳香族化合物[29]。H2MoO4 和Fe2(MoO4)3对木质素的氧化可以得到大量的纤维素[30]。
2.5 简单金属盐为基础的催化剂
氧化钴、氧化锰可以降解木质素生产苯甲酸[31]。使用CuO、CuSO4、FeCl3或者Fe2O3可得到芳香醛或者酮,而使用Co、Fe和 Rh就可以得到各种酚类化合物[32]。DiCosimo 和 Szabo研究了以单电子转移机理氧化1-(3,4-二甲氧基苯)-2-(2-甲氧基苯氧基)-丙烷-1,3-二醇,催化剂为乙酸钴(II)和乙酸锰(II),结果发现发生Cα-Cβ键的断裂[33]。Labat使用乙酸钴(II)/乙酸锰(II)/HBr溶液对甘蔗杆进行氧化,通过紫外可见光谱对机理进行研究[34]。Partenheimer使用乙酸锰(II)/乙酸钴(II)/乙酸锆(II)/HBr体系对木质素氧化,得到超过18种有用的化学品,发现约10.9 wt%的木质素转化为芳香族化合物[35]。Xiang和Lee研究了CuSO4 和 FeCl3 在 433-453 K对黄杨木的氧化[36]。这些都可以得到大量的芳香醛、芳香酸以及芳香酮类化合物。2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)和NaBr氧化软木,这类氧化剂可以使木质素和半纤维素变成完全水溶性产物[37]。Bhargava则研究了各种均相和非均相催化剂对阿魏酸的氧化,均相催化剂的活性顺序如下:Cu2+> Fe2+> Mn2+> Ce2+> Bi2+> Co2+>Zn2+> Mg2+> Ni2+[38]。Zhang報道了铜催化β-O-4类模型化合物变成芳香胺类化合物[39],得到相关的二酮酰胺类化合物及相应酚类。 Liu报道了使用氯化亚铜作为催化剂,可以将2-苯氧基苯乙酮类木质素模型化合物转化为相应的苯甲酸烷基酯,烷氧基苯乙酮以及酚类[40]
2.6 其他金属络合物催化体系
六氰基钌酸盐(II)或三-(4,4'-二甲基-2,2'-联吡啶)铁(II)在1-羟基苯并三唑作为电子转移媒介,氧化藜芦醇变成藜芦醛[41]。Korpi报道了硫酸铜和1,10-菲咯啉在碱性溶液中氧化藜芦醇变成藜芦醛,[Cu(phen)(OH)2]是等量形成的,在氧化过程中[Cu(phen)(OH)2]变成[Cu(phen)(OH)],然后[Cu(phen) (OH)]在碱性条件下又氧化成[Cu(phen) (OH)2][42]。Susan 报道了使用金属钒的络合物氧化木质素模型化合物的研究,改变配体的结构就可以得到不同的断键或者氧化产物[43],发现不同的配体可以选择性地断裂C-O或C-C键[44]。
2.7 无金属催化体系
木质素广泛存在 2-OH和1-OH,Alireza发现了4-AcNH2-TEMPO(4-乙酰氨基-2,2,6,6-四甲基哌啶-氮氧化物),在HNO3和 HCl(10mol%)的存在下,可以将含常见的β-O-4模型化合物的二级醇氧化为酮,经过进一步的双氧水氧化即可以达到C-C键的断裂[45]。John 发展了该方法,在二级苄醇氧化变成酮之后,在[Ir(ppy)2(dtbbpy)]PF6催化下,使用光催化的方式断裂β-O-4模型化合物 [46]。John G 利用酸性离子液体(1-H-3-甲基咪唑氯化盐)对β-O-4模型化合物进行断键研究[47]。
3 展 望
木质素作为可持续的绿色资源,通过使用高效廉价可循环的催化剂,以其为原料出发制备高附加值的化学品和液体燃料是解决能源危机,实现能源可再生的一条重要途径。希望在不久的将来,木质素可以通过高效廉价的催化剂转换得到高附加值工业品。
参考文献:
[1]Portjanskaja E, Stepanova K, Klauson D, et al. The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids [J]. Catalysis Today, 2009, 144(1): 26-30.
[2]Ma Y S, Chang C N, Chiang Y P, et al. Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst[J]. Chemosphere, 2008, 71(5): 998-1004.
[3]Portjanskaja E, Preis S. Aqueous photocatalytic oxidation of lignin: the influence of mineral admixtures[J]. International Journal of Photoenergy, 2007. [4]Crestini C, Caponi M C, Argyropoulos D S, et al. Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds [J]. Bioorganic & medicinal chemistry, 2006, 14(15): 5292-5302.
[5]Crestini C, Pro P, Neri V, et al. Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds [J]. Bioorganic & medicinal chemistry, 2005, 13(7): 2569-2578.
[6]Herrmann W A, Kratzer R M, Fischer R W. Alkylrhenium oxides from perrhenates: a new, economical access to organometallic oxide catalysts [J]. Angewandte Chemie International Edition in English, 1997, 36(23): 2652-2654.
[7]Murahashi S I, Naota T, Komiya N. Metalloporphyrin-catalyzed oxidation of alkanes with molecular oxygen in the presence of acetaldehyde [J]. Tetrahedron letters, 1995, 36(44): 8059-8062.
[8]Sales F G, Maranh?o L C A, Lima Filho N M, et al. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin [J]. Chemical Engineering Science, 2007, 62(18): 5386-5391
[9]Zhu W, Ford W T. Oxidation of lignin model compounds in water with dioxygen and hydrogen peroxide catalysed by metallophthalocyanines [J]. Journal of molecular catalysis, 1993, 78(3): 367-378.
[10]Cui F, Dolphin D. Metallophthalocyanines as possible lignin peroxidase models [J]. Bioorganic & medicinal chemistry, 1995, 3(5): 471-477.
[11]Leanord D R, Smith J R L. Model systems for cytochrome P450 dependent mono-oxygenases. Part 7. Alkene epoxidation by iodosylbenzene catalysed by ionic iron(III) tetraarylporphyrins supported on ion-exchange resins [J]. J. Chem. Soc., Perkin Trans. 2, 1990 (11): 1917-1923.
[12]Fleischer E B, Palmer J M, Srivastava T S, et al. Thermodyamic and kinetic properties of an iron-porphyrin system [J]. Journal of the American Chemical Society, 1971, 93(13): 3162-3167.
[13]Crestini C, Pastorini A, Tagliatesta P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds [J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(1): 195-202.
[14]Naik R, Joshi P, Deshpande R K. Polymer encapsulation of metallophthalocyanines: efficient catalysts for aerobic oxidation of alcohols [J]. Catalysis Communications, 2004, 5(4): 195-198.
[15]Kumar A, Jain N, Chauhan S M S. Biomimetic oxidation of veratryl alcohol with H2O2 catalyzed by iron(III) porphyrins and horseradish peroxidase in ionic liquid [J]. Synlett, 2007 (3): 411-414. [16]Zucca P, Mocci G, Rescigno A, et al. 5, 10, 15, 20-Tetrakis (4-sulfonato-phenyl) porphine-Mn(III) immobilized on imidazole- activated silica as a novel lignin-peroxidase-like biomimetic catalyst [J]. Journal of Molecular Catalysis A: Chemical, 2007, 278(1): 220-227.
[17]Gupta K C, Sutar A K, Lin C C. Polymer-supported Schiff base complexes in oxidation reactions [J]. Coordination Chemistry Reviews, 2009, 253(13): 1926-1946.
[18]Biannic B, Bozell J J. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones [J]. Organic letters, 2013, 15(11): 2730-2733.
[19]Sippola V, Krause O, Vuorinen T. Oxidation of Lignin Model Compounds with Cobalt-sulphosalen Catalyst in the Presence and Absence of Carbohydrate Model Compound [J]. Journal of wood chemistry and technology, 2004, 24(4): 323-340.
[20]Kervinen K, Korpi H, Gerbrand Mesu J, et al. Mechanistic Insights into the Oxidation of Veratryl Alcohol with Co(salen) and Oxygen in Aqueous Media: An in-situ Spectroscopic Study [J]. European journal of inorganic chemistry, 2005 (13): 2591-2599.
[21]Canevali C, Orlandi M, Pardi L, et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation [J]. Journal of the Chemical Society, Dalton Transactions, 2002 (15): 3007-3014.
[22]Collins T J. TAML oxidant activators: a new approach to the activation of hydrogen peroxide for environmentally significant problems [J]. Accounts of chemical research, 2002, 35(9): 782-790.
[23]Napoly F, Jean-Gérard L, Goux-Henry C, et al. Fe(TAML)Li/(diacetoxyiodo) benzene-Mediated Oxidation of Alcohols: Evidence for Mild and Selective C-O and C-C Oxidative Cleavage in Lignin Model Transformations [J]. European Journal of Organic Chemistry, 2014, 2014(4): 781-787.
[24]Cui Y, Chen C L, Gratzl J S, et al. A Mn(IV)-Me4DTNE complex catalyzed oxidation of lignin model compounds with hydrogen peroxide [J]. Journal of Molecular Catalysis A: Chemical, 1999, 144(3): 411-417.
[25]Evtuguin D V, Neto C P, Rocha J, et al. Oxidative delignification in the presence of molybdovanadophosphate heteropolyanions: mechanism and kinetic studies [J]. Applied Catalysis A: General, 1998, 167(1): 123-139.
[26]Gaspar A R, Gamelas J A F, Evtuguin D V, et al. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review [J]. Green Chemistry, 2007, 9(7): 717-730.
[27]Gaspar A, Evtuguin D V, Neto C P. Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates [J]. Applied Catalysis A: General, 2003, 239(1): 157-168. [28]Sik Kim Y, Chang H, Kadla J F. Polyoxometalate (POM) oxidation of milled wood lignin(MWL) [J]. Journal of wood chemistry and technology, 2007, 27(3-4): 225-241.
[29]Yokoyama T, Chang H, Reiner R S, et al. Polyoxometalate oxidation of non-phenolic lignin subunits in water: Effect of substrate structure on reaction kinetics [J]. Holzforschung, 2004, 58(2): 116-121.
[30]Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols [J]. ChemSusChem, 2008, 1(8-9): 763-769.
[31]Kuznetsov B N, Taraban’ko V E, Kuznetsova S A. New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass [J]. Kinetics and Catalysis, 2008, 49(4): 517-526.
[32]Partenheimer W. Methodology and scope of metal/bromide autoxidation of hydrocarbons [J]. Catalysis Today, 1995, 23(2): 69-158.
[33]Crestini C, D'Auria M. Singlet oxygen in the photodegradation of lignin models [J]. Tetrahedron, 1997, 53(23): 7877-7888.
[34]DiCosimo R, Szabo H C. Oxidation of lignin model compounds using single-electron-transfer catalysts [J]. The Journal of Organic Chemistry, 1988, 53(8): 1673-1679.
[35]Gon?alves A R, Schuchardt U. Hydrogenolysis of lignins [J]. Applied biochemistry and biotechnology, 2002, 98(1-9): 1211-1219.
[36]Tarabanko V E, Fomova N A, Kuznetsov B N, et al. On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen [J]. Reaction Kinetics and Catalysis Letters, 1995, 55(1): 161-170.
[37]Xiang Q, Lee Y Y. Production of oxychemicals from precipitated hardwood lignin [J]. Applied biochemistry and biotechnology, 2001, 91(1-9): 71-80.
[38]Okita Y, Saito T, Isogai A. TEMPO-mediated oxidation of softwood thermomechanical pulp [J]. Holzforschung, 2009, 63(5): 529-535.
[39]Liu X, Xu H, Ma Z, et al. Cu-catalyzed aerobic oxygenation of 2-phenoxyacetophenones to alkyloxy acetophenones[J]. RSC Advances, 2016, 6(32): 27126-27129.
[40]Zhang J, Liu Y, Chiba S, et al. Chemical conversion of β-O-4 lignin linkage models through Cu-catalyzed aerobic amide bond formation [J]. Chemical Communications, 2013, 49(97): 11439-11441.
[41]Rochefort D, Leech D, Bourbonnais R. Electron transfer mediator systems for bleaching of paper pulp [J]. Green Chemistry, 2004, 6(1): 14-24.
[42]Korpi H, Figiel P J, Lankinen E, et al. On in situ prepared Cu-phenanthroline complexes in aqueous alkaline solutions and their use in the catalytic oxidation of veratryl alcohol [J]. European journal of inorganic chemistry, 2007(17): 2465-2471. [43]Son S, Toste F D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage: Application to Degradation of Lignin Model Compounds [J]. Angewandte Chemie International Edition, 2010, 49(22): 3791-3794.
[44]Hanson S K, Wu R, Silks L A. C-C or C-O Bond Cleavage in a Phenolic Lignin Model Compound: Selectivity Depends on Vanadium Catalyst [J]. Angewandte Chemie International Edition, 2012, 51(14): 3410-3413.
[45]Rahimi A, Azarpira A, Kim H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin [J]. Journal of the American Chemical Society, 2013, 135(17): 6415-6418.
[46]Nguyen J D, Matsuura B S, Stephenson C R J. A photochemical strategy for lignin degradation at room temperature [J]. Journal of the American Chemical Society, 2014, 136(4): 1218-1221.
[47]Jia S, Cox B J, Guo X, et al. Cleaving the β-O-4 Bonds of Lignin Model Compounds in an Acidic Ionic Liquid, 1-H-3-Methylimidazolium Chloride: An Optional Strategy for the Degradation of Lignin [J]. ChemSusChem, 2010, 3(9): 1078-1084.
转载注明来源:https://www.xzbu.com/1/view-15067138.htm