双曲空间中具有平行平均曲率子流形的刚性
来源:用户上传
作者:
摘要:設M是双曲空间中具有平行平均曲率的完备子流形,φ是M的无迹第二基本形式.本文证明了在子流形任意测地球上|φ|的L2模小于二次增长条件下,supx∈M |φ|2 (x)小于某常数或者|φ|的Ln模小于某常数时,M是全脐的,这一结果推广了完备极小子流形的相关结果.
关键词:双曲空间;无迹第二基本形式;第一特征值
中图分类号:0186.1
文献标志码:A
DOI: 10.3969/j.issn.1000-5641.201911009
0 引 言
著名的Bernstein定理指出R3中的完备极小图一定是平面.Simons[l],Fleming[2],De Giorgi[3]和Almgren[4]的工作告诉我们在R”(n≤7)中的完备极小图一定是超平面.进一步,Bombieri,De Giorgi和Giusti[5]在n>7时给出Bernstein定理的反例.do Carmo和Peng[6],Fisher-Colbrie和Schoen[7]分别给出了Bernstein定理的推广:R3中完备稳定的极小曲面一定是平面.在高维的情况下,以上问题一直是悬而未决的.然而,do Carmo和Peng[8]证明了Rn+1中完备稳定的极小超曲面在满足条件模长.以上定理也有许多有趣的推广,例如Zhu和Shen[9]证明了Rn+1(n≥3)中具有有限总曲率的完备稳定极小超曲面一定是超平面.Wang[10]进一步把Zhu-Shen定理推广到欧氏空间中极小子流形的情形.最近,Xia和Wang[11]研究了截面曲率为常数1的双曲空间Hn+m(n≥5)中的完备极小子流形M,证明了在M的测地球上|h|的L2模小于二次增长条件下,supx∈M |h|2(X)小于某常数或者|h|的Ln模小于某常数时,M是全测地的.De Oliveira和Xiac[12]继续研究了双曲空间中的完备极小子流形,得出对于某个区域内的常数d,在M的测地球上lhl的Ld模小于二次增长条件下,supx∈M |h|2(X)小于某常数或者|h|的Ln模小于某常数时,M是全测地的.
本文研究双曲空间Hn+p中具有平行平均曲率的完备非紧子流形,得到此类子流形的一些刚性结果(定理2.1-2.3),这些结果是文献[11]和[12]中相应结果的推广.
1 预备知识
我们对指标作如下约定:
[参考文献]
[1] SIMONS J. Minimal varieties in Riemannian manifolds [J]. Annals of Mathematics (Second Series), 1968, 88(1): 62-105. DOI: 10.2307/1970556.
[2] FIEMING W H. On the oriented plateau problem [J]. Rendiconti Del Circolo Matematico Di Palermo, 1962, 11(1): 69-90. DOI:10.1007/BF02849427.
[3]
GIORGI E D. Una estensione del teorema di Bernstein [J]. Ann Scuola Norm Sup Pisa, 1965, 19(3): 79-85.
[4]
AIMGREN F J. Some interior regularity theorelns for mirurnal surfaces and an extension of Bernstein 's theorem [J]. Annals of Mathematics. 1966: 277-292.
[5]
BOMBIERI E. GIORGI E D, GIUSTI E. Minimal cones and the Bernstein problem [J]. Inventiones Mathematicae. 1969, 7(3): 243-268. DOI: 10.1007/BF01404309.
[6]
DO CARMO M. PENG C K. Stable complete minimal surfaces in Rs are planes [J]. Bull Amer Math Soc. 1979, 1(6): 903-906. DOI:10 .1090/S0273-0979-1979-14689-5.
[7]
FISCHER-COIBRIE D. SCHOEN R. The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature [J]. Communications on Pure and Applied Mathematics, 1980, 33(2): 199-211. DOI: 10.1002/cpa.3160330206.
[8]
DO CARMO M. PENG C K, Stable complete minimal hypersurfaces [C] // Proceedings of the 1980 Beijing Symposium on DifferentialEquations and Differential Geometry. Beijing: Science Press. 1982: 1349-1358.
[9] ZHU X H. SHEN Y B. On stable complete minimal hypersurfaces in Rn+l [J]. American Journal of Mathematics, 1998, 120(1): 103-116. DOI: 10.1353/ajm.1998.0005.
[10] WANG Q. On minimal submanifolds in an Euclidean space [J]. Math Nachr, 2003, 261/262(1): 176-180. DOI: 10.1002/mana.200310120.
[11] XIA C, WANG Q. Gap theorems for minimal submanifolds of a hyperbolic space EJl. Journal of Mathematical Analysis andApplications, 2016, 436(2): 983-989. DOI: 10.1016/J.jmaa.2015.12.050.
[12] OLIVEIRA H P D, XIA C. Rigidity of complete minimal submanifolds in a hyperbolic space [J] . Manuscripta Mathematica, 2018(88):1-10 .
[13]
CUNHA A \V, DE LIMA H F, DOS SANTOS F R. On the first stability eigenvalue of closed submanifolds in the Euclidean andhyperbolic spaces [J] . Differential Geometry and its Applications, 2017, 52: 11-19. DOI: 10.1016/j.difgeo.2017.03.002.
[14]
DE BARROS A A. BRASIL JR A C, DE SOURSA JR L A M. A new characterization of submanifolds with parallel mean curvaturevector in Sn+p [J]. Kodai Mathematical Journal, 2004. 27(1): 45-56. DOI: 10.2996/kmj/1085143788.
[15]
CHENG S Y. YAU S T. Differential equations on Riemannian manifolds and their geometric applications EJl . Communications onPure and Applied Mathematics, 1975, 28(3): 333-354. DOI: 10.1002/cpa.3160280303.
[16] CHEUNG L F, LEUNG P F. Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J]. Mathematische Zeitschrift. 2001, 236(3): 525-530. DOI: 10.1007/PL00004840.
[17]
HOFFMAN D. SPRUCK J. Sobolev and isoperimetric inequalities for Riemannian submanifolds [J] . Communications on Pure andApplied Mathematics, 1974, 27(6): 715-727.
(責任编辑:林磊)
转载注明来源:https://www.xzbu.com/1/view-15154918.htm