您好, 访客   登录/注册

浅析数学课堂逆向思维能力培养的重要性

来源:用户上传      作者: 王 军

  摘要:本文就如何培养学生的逆向思维能力提出了几点看法。在新形势下,培养学生的逆向思维能力,能大大提高学生的学习兴趣,激发他们的创新精神,这也是素质教育的要求。
  关键词:课堂教学;概念教学;逆向思维
  中图分类号:G633文献标识码:A文章编号:1003-2851(2010)05-0057-01
  
  本文就如何培养学生的逆向思维能力提出了几点看法。在新形势下,培养学生的逆向思维能力,能大大提高学生的学习兴趣,激发他们的创新精神,这也是素质教育的要求。
  逆向思维也叫求异思维,它是对已成定论的事物或观点反过来思考的一种思维方式。运用逆向思维去思考和处理问题,能够克服思维定势,破除由经验和习惯造成的僵化的认识模式,出其不意地达到解决问题的目的。那么,在教学中如何培养学生的逆向思维呢?
  一、以课堂教学中的问题为抓手,培养学生的逆向思维
  课堂是教师实施教学和学生学习活动的主阵地,学生的思维活动主要是在课堂中展开的。教师应当有意识地把培养学生的逆向思维这一教学要求带进每节课堂,并寻找各种契机开展实施。课堂中学生思维活动的主要形式是问题探讨,因此,教师在教学过程中要善于设置与逆向思维有关的问题,以训练学生的逆向思维。
  (一)在概念教学中注意培养逆向思维。数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如在学习“倒数”概念时,先可以问学生:“5的倒数是什么数?”接下来问:“5是什么数的倒数”?在平面几何定义、定理的教学中,渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。例如:“互为余角”的定义教学中,可采用以下形式:∵∠A+∠B=90°,∴∠A、∠B互为余角(正向思维)。∵∠A、∠B互为余角。∴∠A+∠B=90°(逆向思维)。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。
  (二) 加强逆定理的教学。每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在平面几何中,许多的性质与判定都有逆定理。如:平行线的性质与判定,线段的垂直平分线的性质与判定,平行四边形的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维大有裨益。
  (三)强调某些基本教学方法,促进逆向思维。数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。
  二、充分利用习题训练,培养学生的逆向思维
  习题训练也是培养学生思维能力的重要途径之一。教师有意识地选编一些习题,进行逆向思维的专项训练,对提高学生的逆向思维能力能够起到很大的促进作用。数学中的许多公式、法则都可用等式表示。等号所具有的双向性学生容易理解,但很多学生习惯于从左到右运用公式、法则,而对于逆向运用却不习惯,因此,在数学公式、法则的教学中,应加强公式法则的逆用指导,使学生明白,只有灵活地运用,才能使解题得心应手。
  例1:计算:(a+2b)2 (a-2b) 2
  点拨:本题可以直接正向运用完全平方公式,但计算过程比较复杂,若能逆向运用公式(ab)2=a2b2,则计算过程就变得简单明了了。
   解法一:原式=(a2+4ab+4b2)(a2-4ab+4b2)
   =〔(a2+4b2)+4ab〕〔(a2+4b2)-4ab〕
   = (a2+4b2)2-16a2b2
   = a4-8a2b2+16b4
  解法二: 原式=〔(a+2b)(a-2b)〕2
   = (a2-4b2)2
   = a4-8a2b2+16b4
  总之,在教学中培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的学习兴趣,提高学生的创新能力和整体素质。
  例2:分解因式x4-y4
   解原式=( x2+ y2) ( x2- y2)
   =( x2+ y2) (x+y)(x-y)
  =( x2+ y2) ( x2- y2)
  分析:由于对乘法运算太熟练,“乘”的意识太强了,因式分解已完成又习惯性地作了乘法运算。
  结果不是“积”
  例3:分解因式:x3-2x2+x-2
   解原式=x(x2-2x+1)-2
   =x(x-1)2-2
  分析:只注意到结果中的x(x-1)2是积的形式,却忽略了小尾巴“-2”使积成了和,应该这样做原式=(x3-2x2)+(x-2)=( x-2)( x2+1)


转载注明来源:https://www.xzbu.com/9/view-914188.htm