骨髓间充质干细胞异常在MDS发病机制中的研究
来源:用户上传
作者:
摘要:骨髓增生异常综合征是一种具有高度异质性的源于骨髓造血干细胞的克隆性疾病,免疫失衡和骨髓微环境异常在其发病机制中具有重要地位。骨髓间充质干细胞是骨髓微环境中重要的细胞成分,具有支持和调节造血干细胞的增殖和分化以及免疫调节的作用。骨髓间充质干细胞异常在骨髓增生异常综合征发病中表现为造血支持缺陷和免疫抑制,本文现就此机制进行综述。关键词:骨髓增生异常综合征;间充质干细胞;骨髓微环境;造血支持缺陷;免疫抑制
中图分类号:R551 文献标识码:A DOI:10.3969/j.issn.1006-1959.2020.06.008
文章编号:1006-1959(2020)06-0024-04
Abstract:Myelodysplastic syndrome is a highly heterogeneous clonal disease derived from bone marrow hematopoietic stem cells. Immunological imbalance and abnormal bone marrow microenvironment play an important role in its pathogenesis. Bone marrow mesenchymal stem cells are important cellular components in the bone marrow microenvironment, and have the role of supporting and regulating the proliferation and differentiation of hematopoietic stem cells and immune regulation. The abnormality of bone marrow mesenchymal stem cells in the pathogenesis of myelodysplastic syndrome manifests as defects in hematopoietic support and immunosuppression. This article reviews the mechanism.
Key words:Myelodysplastic syndrome;Mesenchymal stem cells;Bone marrow microenvironment;Hematopoietic support defects;Immunosuppression
骨髓增生異常综合征(myelodysplastic syndrome,MDS)是起源于造血干细胞的一组高度异质性克隆性疾病,以一系或多系血细胞病态造血及无效造血,高风险向急性白血病转化为特征。目前对其发病机制的研究涉及染色体基因突变、表观遗传学改变、免疫失衡、骨髓微环境异常等方面。骨髓微环境被称为造血干细胞(hematopoietic stem cells,HSCs)的“土壤”,以三维网状空间结构为HSCs提供生存的细胞和分子微环境,主要由间充质干细胞(mesenchymal stem cells,MSCs)、细胞外基质和各种细胞因子组成,各成分互相作用以维持和调节HSCs的正常造血[1,2]。研究显示[2],MDS的无效造血可能与骨髓微环境异常有关。间充质干细胞是骨髓微环境中的重要成分,其异常在MDS的发病和进展中有着重要的作用,本文就近几年骨髓微环境中的间充质干细胞异常在MDS发病机制中的研究进展进行综述。
1间充质干细胞
间充质干细胞来源于胚胎发育早期的中胚层,是一类具有自我更新和多向分化潜能的成体干细胞。1968年Friedenstein AJ等[3]从自然贴壁法中获得了骨髓基质细胞(bone marrow stromal cells,BMSCs),至90年代末,研究者从中成功分离出一种具有成骨、成软骨和成脂肪能力的细胞,命名为间充质干细胞。其后,诸如脂肪、脐带、胎盘、肌肉等其他组织中也被分离出间充质干细胞,不同来源的MSCs在蛋白质表达谱系及特性上有所差异,骨髓间充质干细胞(bone marrow mesenchymal stem cells,BM-MSCs),简称MSCs。研究显示,体内固有的MSCs经体外培养后,其生物学特性发生了根本的变化,又由于其来源于骨髓的支持结构,滋养HSCs的生长,因此又称为间充质基质细胞(mesenchymal stromal cells,MSCs)。
MSCs有很强的增殖分化潜能,可被诱导分化为中胚层的成骨样细胞、软骨样细胞,外胚层的神经元样细胞、胰岛素分泌细胞、心肌样细胞和外胚层的肝细胞样细胞[4,5],具有组织修复功能的可能性。免疫耐受性是MSCs的另一大特性。研究表明[6,7],MSCs可以抑制T细胞的增殖从而导致免疫耐受,并且MSCs的分化并未导致其抗原性的增加[8]。另有研究显示[9],MSCs可能通过抗原呈递以及促细胞因子的分泌抑制T细胞从而产生免疫豁免。此外,还有MSCs通过转分化[10]和细胞融合[11]、旁分泌作用[12]、细胞与细胞接触依赖[7]、胞外囊泡[13]和线粒体转移[14]以及表观遗传学调控[15]等机制产生大量生物活性物质,具有造血支持、提供营养、激活内源性干/祖细胞、组织损伤修复、免疫调节、促进血管新生、抗细胞凋亡、抗氧化、抗纤维化以及归巢等多方面的作用的研究报道。目前,MSCs已成为细胞治疗领域最具临床应用价值的干细胞。 3總结
骨髓增生异常综合征的发病机制目前尚不明确,但研究显示其与造血微环境和免疫系统的异常密切相关。骨髓间充质干细胞是骨髓微环境中重要的细胞成分,在支持和调节造血干细胞的增殖和分化以及免疫调节中起到重要作用。MSCs的异常在MDS的发病机制中主要表现为造血支持的缺陷和免疫调节的抑制,涉及不同信号通路的多种基因的表达。对于MDS-MSCs的研究不仅可以阐明MDS的部分发病机制,对疾病的进展、治疗方法和疗效评估亦有重大的意义,有待于进一步的深入探索。
参考文献:
[1]Birbrair A,Frenette PS.Niche heterogeneity in the bone marrow[J].Annals of the New York Academy of Sciences,2016,1370(1):82-96.
[2]Bulycheva E,Rauner M,Medyouf H,et al.Myelodysplasia is in the niche: novel concepts and emerging therapies[J].Leukemia,2015,29(2):259-268.
[3]Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Experimental Hematology,1976,4(5):267-274.
[4]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016(99):62-68.
[5]Bianco P."Mesenchymal"stem cells[J].Annu Rev Cell Dev Biol,2014(30):677-704.
[6]Davies LC,Heldring N,Kadri N,et al.Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression[J].Stem Cells,2017,35(3):766-776.
[7]Di Trapani M,Bassi G,Midolo M,et al.Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T,B and NK cell functions[J].Sci Rep,2016,6(24):120.
[8]Lee HJ,Kang KS,Kang SY,et al.Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood[J].Journal of Veterinary Science,2016,17(3):289-297.
[9]Zhao N,Li H,Yan Y,et al.Mesenchymal stem cells overexpressing IL-35 effectively inhibit CD4(+)T cell function[J].Cell Immunol,2017(312):61-66.
[10]Pesaresi M,Sebastian-Perez R,Cosma MP.Dedifferentiation,transdifferentiation and cell fusion:in vivo reprogramming strategies for regenerative medicine[J].FEBS J,2019,286(6):1074-1093.
[11]Aguilera-Castrejon A,Pasantes-Morales H,Montesinos JJ,et al.Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules[J].Neurochem Res,2017,42(2):415-427.
[12]Santos ND,Mosqueira D,Sousa LM,et al.Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic,and endogenous cell-activation mechanisms[J].Stem Cell Res Ther,2014,5(1):5. [13]Zheng G,Huang R,Qiu G,et al.Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J].Cell Tissue Res,2018,374(1):1-15.
[14]Paliwal S,Chaudhuri R,Agrawal A,et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J].J Biomed Sci,2018,25(1):31.
[15]Mortada I,Mortada R.Epigenetic changes in mesenchymal stem cells differentiation[J].Eur J Med Genet,2018,61(2):114-118.
[16]Dazzi F,Ramasamy R,Glennie S,et al.The role of mesenchymal stem cells in haemopoiesis[J].Blood Rev,2006,20(3):161-171.
[17]Geyh S,Oz S,Cadeddu RP,et al.Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells[J].Leukemia,2013,27(9):1841.
[18]Zhao ZG,Xu W,Yu HP,et al.Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes[J].Cancer Letters,2012,317(2):136-143.
[19]Viswanathan C,Kulkarni R,Bopardikar A,et al.Significance of CD34 Negative Hematopoietic Stem Cells and CD34 Positive Mesenchymal Stem Cells-A Valuable Dimension to the Current Understanding[J].Curr Stem Cell Res Ther,2017,12(6):476-483.
[20]費成明,顾树程,赵佑山,等.骨髓增生异常综合征患者骨髓间充质干细胞成骨分化功能的研究[J].中国实验血液学杂志,2015,23(3):750-755.
[21]Falconi G,Fabiani E,Fianchi L,et al.Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes[J].Experimental Hematology,2016,44(1):75-83,e4.
[22]Sackstein R.The biology of CD44 and HCELL in hematopoiesis:the"step 2-bypass pathway"and other emerging perspectives[J].Current Opinion in Hematology,2011,18(4):239.
[23]Greenbaum A,Hsu YMS,Day RB,et al.CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J].Nature,2013,495(7440):227.
[24]Sugino N,Miura Y,Yao H,et al.Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis-and adhesion-related gene expression profiles[J].Biochem Biophys Res Commun,2016,469(4):823-829.
[25]Fajardo-Orduna GR,Mayani H,Montesinos JJ.Hematopoietic Support Capacity of Mesenchymal Stem Cells:Biology and Clinical Potential[J].Arch Med Res,2015,46(8):589-596.
[26]Ajami M,Soleimani M,Abroun S,et al.Comparison of cord blood CD34+stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF[J].J Cell Biochem,2019,120(9):15297-15309. [27]Caselli A,Olson TS,Otsuru S,et al.IGF-1-mediated osteoblastic niche expansion enhances long‐term hematopoietic stem cell engraftment after murine bone marrow transplantation[J].Stem Cells,2013,31(10):2193-2204.
[28]Poon Z,Dighe N,Venkatesan SS,et al.Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy[J].Leukemia,2019,33(6):1487-1500.
[29]Corradi G,Baldazzi C,Ocadlíková D,et al.Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival[J].Stem cell research&therapy,2018,9(1):271.
[30]Wang C,Yang Y,Gao S,et al.Immune dysregulation in myelodysplastic syndrome:Clinical features,pathogenesis and therapeutic strategies[J].Critical Reviews in Oncology/Hematology,2018(122):123-132.
[31]Ganán-Gómez I,Wei Y,Starczynowski DT,et al.Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J].Leukemia,2015,29(7):1458-1469.
[32]Epperson DE,Nakamura R,Saunthararajah Y,et al.Oligoclonal T cell expansion in myelodysplastic syndrome:evidence for an autoimmune process[J].Leukemia Research,2001,25(12):1075-1083.
[33]Zhao ZG,Li WM,Chen ZC,et al.Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases[J]. Leukemia&Lymphoma,2008,49(11):2187-2195.
[34]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blood, 2002,99(10):3838-3843.
[35]Wang Z,Tang X,Xu W,et al.The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes[J].PloS One,2013,8(3):e57470.
收稿日期:2020-01-01;修回日期:2020-01-22
編辑/肖婷婷
转载注明来源:https://www.xzbu.com/1/view-15193624.htm